Hybrid triboelectric-piezoelectric nanogenerator for long-term load monitoring in total knee replacements
A self-powered and durable pressure sensor for large-scale pressure detection on the knee implant would be highly advantageous for designing long-lasting and reliable knee implants as well as obtaining information about knee function after the operation. The purpose of this study is to develop a robust energy harvester that can convert wide ranges of pressure to electricity to power a load sensor inside the knee implant. To efficiently convert loads to electricity, we design a cuboid-array-structured tribo-pizoelectric nanogenerator (TPENG) in vertical contact mode inside a knee implant package. The proposed TPENG is fabricated with aluminum and cuboid-patterned silicone rubber layers. Using the cuboid-patterned silicone rubber as a dielectric and aluminum as electrodes improves performance compared with previously reported self-powered sensors. The combination of 10 dopamine-modified BaTiO piezoelectric nanoparticles in the silicone rubber enhanced electrical stability and mechanical durability of the silicone rubber. To examine the output, the package-harvester assemblies are loaded into an MTS machine under different periodic loading. Under different cyclic loading, frequencies, and resistance loads, the harvester's output performance is also theoretically studied and experimentally verified. The proposed cuboid-array-structured TPENG integrated into the knee implant package can generate approximately 15W of apparent power under dynamic compressive loading of 2200 N magnitude. In addition, as a result of the TPENG's materials being effectively optimized, it possesses remarkable mechanical durability and signal stability, functioning after more than 30 000 cycles under 2200 N load and producing about 300 V peak to peak. We have also presented a mathematical model and numerical results that closely capture experimental results. We have reported how the TPENG charge density varies with force. This study represents a significant advancement in a better understanding of harvesting mechanical energy for instrumented knee implants to detect a load imbalance or abnormal gait patterns.
On-demand fabrication of piezoelectric sensors for in-space structural health monitoring
Inflatable structures, promising for future deep space exploration missions, are vulnerable to damage from micrometeoroid and orbital debris impacts. Polyvinylidene fluoride-trifluoroethylene (PVDF-trFE) is a flexible, biocompatible, and chemical-resistant material capable of detecting impact forces due to its piezoelectric properties. This study used a state-of-the-art material extrusion system that has been validated for in-space manufacturing, to facilitate fast-prototyping of consistent and uniform PVDF-trFE films. By systematically investigating ink synthesis, printer settings, and post-processing conditions, this research established a comprehensive understanding of the process-structure-property relationship of printed PVDF-trFE. Consequently, this study consistently achieved the printing of PVDF-trFE films with a thickness of around 40 m, accompanied by an impressive piezoelectric coefficient of up to 25 pC N. Additionally, an all-printed dynamic force sensor, featuring a sensitivity of 1.18 V N, was produced by mix printing commercial electrically-conductive silver inks with the customized PVDF-trFE inks. This pioneering on-demand fabrication technique for PVDF-trFE films empowers future astronauts to design and manufacture piezoelectric sensors while in space, thereby significantly enhancing the affordability and sustainability of deep space exploration missions.
Shape memory alloy tube actuators inherently enable internal fluidic cooling for a robotic finger under force control
This paper presents the design, control and evaluation of a novel robotic finger actuated by shape memory alloy (SMA) tubes which intrinsically afford an internal conduit for fluidic cooling. The SMA tubes are thennomechanically programmed to flex the robotic finger when Joule heated. A superelastic SMA plate provides a spring return motion to extend the finger when cooling liquid is pumped through the internal channel of the SMA tube actuators. The mechanical design and nonlinear force controller are presented for this unique robotic finger. Sinusoidal and step response experiments demonstrate excellent error minimization when operated below the bandwidth which was empirically determined to be 6 rad s. Disturbance rejection experiments are also performed to demonstrate the potential to minimize externally applied forces. This method of internal liquid cooling of Joule heated SMA tubes simultaneously increases the system bandwidth and expands the potential uses of SMA actuators for robotic applications. The results show that this novel robotic finger is capable of precise force control and has a high strength to weight ratio. The finger can apply a force of 4.35 N and has a mass of 30 g. Implementing this design into wearable prosthetic devices could enable lightweight, high strength applications previously not achievable.
Elastic Shape Morphing of Ultralight Structures by Programmable Assembly
Ultralight materials present an opportunity to dramatically increase the efficiency of load-bearing aerostructures. To date, however, these ultralight materials have generally been confined to the laboratory bench-top, due to dimensional constraints of the manufacturing processes. We show a programmable material system applied as a large-scale, ultralight, and conformable aeroelastic structure. The use of a modular, lattice-based, ultralight material results in stiffness typical of an elastomer () at a mass density typical of an aerogel ( ). This, combined with a building block based manufacturing and configuration strategy, enables the rapid realization of new adaptive structures and mechanisms. The heterogeneous design with programmable anisotropy allows for enhanced elastic and global shape deformation in response to external loading, making it useful for tuned fluid-structure interaction. We demonstrate an example application experiment using two building block types for the primary structure of a wingspan aircraft, where we spatially program elastic shape morphing to increase aerodynamic efficiency and improve roll control authority, demonstrated with full-scale wind tunnel testing.
A Smart Knee Implant Using Triboelectric Energy Harvesters
Although the number of total knee replacement (TKR) surgeries is growing rapidly, functionality and pain-reduction outcomes remain unsatisfactory for many patients. Continual monitoring of knee loads after surgery offers the potential to improve surgical procedures and implant designs. The goal of this study is to characterize a triboelectric energy harvester under body loads and to design compatible frontend electronics to digitize the load data. The harvester prototype would be placed between the tibial component and polyethylene bearing of a TKR implant. The harvester generates power from the compressive load. To examine the harvester output and the feasibility of powering a digitization circuitry, a triboelectric energy harvester prototype is fabricated and tested. An axial tibiofemoral load profile from normal walking (gait) is approximated as a 1 Hz sine wave signal and is applied to the harvester. Because the root mean square of voltages generated via this phenomenon is proportional to the applied load, the device can be simultaneously employed for energy harvesting and load sensing. With an approximated knee cyclic load of 2.3 kN at 1 Hz, the harvester generated output voltage of 18 RMS, and an average power of 6 at the optimal resistance of 58Ω. The harvested signal is rectified through a negative voltage converter rectifier and regulated through a linear-dropout regulator with a combined efficiency of 71%. The output of the regulator is used to charge a supercapacitor. The energy stored in the supercapacitor is used for low resolution sensing of the load through a peak detector and analog-to-digital converter. According to our analysis, sensing the load several times a day is feasible by relying only on harvested power. The results found from this work demonstrate that triboelectric energy harvesting is a promising technique for self-powering load sensors inside knee implants.
Force detection, center of pressure tracking, and energy harvesting from a piezoelectric knee implant
Recent developments in the field of orthopedic materials and procedures have made the total knee replacement (TKR) an option for people who suffer from knee diseases and injuries. One of the ongoing debates in this area involves the correlation of postoperative joint functionality to intraoperative alignment. Due to a lack of in vivo data from the knee joint after surgery, the establishment of a well-quantified alignment method is hindered. In order to obtain information about knee function after the operation, the design of a self-powered instrumented knee implant is proposed in this study. The design consists of a total knee replacement bearing equipped with four piezoelectric transducers distributed in the medial and lateral compartments. The piezoelectric transducers are utilized to measure the total axial force applied on the tibial bearing through the femoral component of the joint, as well as to track the movement in the center of pressure (CoP). In addition, the generated voltage from the piezoelectrics can be harvested and stored to power embedded electronics for further signal conditioning and data transmission purposes. Initially, finite element (FE) analysis is performed on the knee bearing to select the best location of the transducers with regards to sensing the total force and location of the CoP. A series of experimental tests are then performed on a fabricated prototype which aim to investigate the sensing and energy harvesting performance of the device. Piezoelectric force and center of pressure measurements are compared to actual experimental quantities for twelve different relative positions of the femoral component and bearing of the knee implant in order to evaluate the performance of the sensing system. The output voltage of the piezoelectric transducers is measured across a load resistance to determine the optimum extractable power, and then rectified and stored in a capacitor to evaluate the realistic energy harvesting ability of the system. The results show only a small level of error in sensing the force and the location of the CoP. Additionally, a maximum power of 269.1 is achieved with a 175 optimal resistive load, and a 4.9 V constant voltage is stored in a 3.3 mF capacitor after 3333 loading cycles. The sensing and energy harvesting results present the promising potential of this system to be used as an integrated self-powered instrumented knee implant.
Constant-torque thermal cycling and two-way shape memory effect in NiTiHf torque tubes
Ni-rich NiTiHf (at.%) high-temperature shape memory alloy (SMA) tubes were thermomechanically cycled under constant torques. Four loading configurations were examined that consisted of a series of ascending stresses (low-to-high stress from 0 to 500 MPa outer fiber shear stress), a series of descending stresses (high-to-low stress from 500 to 0 MPa), and a series of thermal cycles at a constant stress of 500 MPa, all using an upper cycle temperature (UCT) of 300 °C. The last configuration consisted of another series of ascending stress levels using a lesser UCT of 250 °C. It was found that the descending series trial stabilized the material response in fewer cycles than the other loading paths. Similarly, cycling at a constant stress of 500 MPa for approximately 100 cycles reached near stabilization (<0.05% residual strain accumulation). Transformation shear strains were the highest and most stable when cycled from lower-to-higher stresses (ascending series), reaching 5.78% at 400 MPa. Cycling to lesser UCTs of 250 °C (vs. 300 °C) resulted in the highest two-way shape memory effect (TWSME), measuring over 3.25%. This was attributed to the effect of retained martensite and any transformation dislocations that served to stabilize the TWSME at the lower UCT. Results of this study suggest that different training paths might be used, depending on actuator performance requirements, whether the principal need is to maximize transformation strain, maximize the two-way shear strain, or stabilize the response in fewer cycles.
Temperature Measurement and Damage Detection in Concrete Beams Exposed to Fire Using PPP-BOTDA Based Fiber Optic Sensors
In this study, distributed fiber optic sensors based on pulse pre-pump Brillouin optical time domain analysis (PPP-BODTA) are characterized and deployed to measure spatially-distributed temperatures in reinforced concrete specimens exposed to fire. Four beams were tested to failure in a natural gas fueled compartment fire, each instrumented with one fused silica, single-mode optical fiber as a distributed sensor and four thermocouples. Prior to concrete cracking, the distributed temperature was validated at locations of the thermocouples by a relative difference of less than 9 %. The cracks in concrete can be identified as sharp peaks in the temperature distribution since the cracks are locally filled with hot air. Concrete cracking did not affect the sensitivity of the distributed sensor but concrete spalling broke the optical fiber loop required for PPP-BOTDA measurements.
Parametric analysis of electromechanical and fatigue performance of total knee replacement bearing with embedded piezoelectric transducers
Total knee arthroplasty (TKA) is a common procedure in the United States; it has been estimated that about 4 million people are currently living with primary knee replacement in this country. Despite huge improvements in material properties, implant design, and surgical techniques, some implants fail a few years after surgery. A lack of information about in vivo kinetics of the knee prevents the establishment of a correlated intra- and postoperative loading pattern in knee implants. In this study, a conceptual design of an ultra high molecular weight (UHMW) knee bearing with embedded piezoelectric transducers is proposed, which is able to measure the reaction forces from knee motion as well as harvest energy to power embedded electronics. A simplified geometry consisting of a disk of UHMW with a single embedded piezoelectric ceramic is used in this work to study the general parametric trends of an instrumented knee bearing. A combined finite element and electromechanical modeling framework is employed to investigate the fatigue behavior of the instrumented bearing and the electromechanical performance of the embedded piezoelectric. The model is validated through experimental testing and utilized for further parametric studies. Parametric studies consist of the investigation of the effects of several dimensional and piezoelectric material parameters on the durability of the bearing and electrical output of the transducers. Among all the parameters, it is shown that adding large fillet radii results in noticeable improvement in the fatigue life of the bearing. Additionally, the design is highly sensitive to the depth of piezoelectric pocket. Finally, using PZT-5H piezoceramics, higher voltage and slightly enhanced fatigue life is achieved.
Perspective and Potential of Smart Optical Materials
The increasing requirements of hyperspectral imaging optics, electro/photo-chromic materials, negative refractive index metamaterial optics, and miniaturized optical components from micro-scale to quantum-scale optics have all contributed to new features and advancements in optics technology. Development of multifunctional capable optics has pushed the boundaries of optics into new fields that require new disciplines and materials to maximize the potential benefits. The purpose of this study is to understand and show the fundamental materials and fabrication technology for field-controlled spectrally active optics (referred to as smart optics) that are essential for future industrial, scientific, military, and space applications, such as membrane optics, light detection and ranging (LIDAR) filters, windows for sensors and probes, telescopes, spectroscopes, cameras, light valves, light switches, and flat-panel displays. The proposed smart optics are based on the Stark and Zeeman effects in materials tailored with quantum dot arrays and thin films made from readily polarizable materials via ferroelectricity or ferromagnetism. Bound excitonic states of organic crystals are also capable of optical adaptability, tunability, and reconfigurability. To show the benefits of smart optics, this paper reviews spectral characteristics of smart optical materials and device technology. Experiments testing the quantum-confined Stark effect, arising from rare earth element doping effects in semiconductors, and applied electric field effects on spectral and refractive index are discussed. Other bulk and dopant materials were also discovered to have the same aspect of shifts in spectrum and refractive index. Other efforts focus on materials for creating field-controlled spectrally smart active optics (FCSAO) on a selected spectral range. Surface plasmon polariton transmission of light through apertures is also discussed, along with potential applications. New breakthroughs in micro scale multiple zone plate optics as a micro convex lens are reviewed, along with the newly discovered pseudo-focal point not predicted with conventional optics modeling. Micron-sized solid state beam scanner chips for laser waveguides are reviewed as well.
Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers
This paper studies the fabrication and testing of a magnet free piezoelectric energy harvester (EH) for powering biomedical devices and sensors inside the body. The design for the EH is a fan-folded structure consisting of bimorph piezoelectric beams folding on top of each other. An actual size experimental prototype is fabricated to verify the developed analytical models. The model is verified by matching the analytical results of the tip acceleration frequency response functions (FRF) and voltage FRF with the experimental results. The generated electricity is measured when the EH is excited by the heartbeat. A closed loop shaker system is utilized to reproduce the heartbeat vibrations. Achieving low fundamental natural frequency is a key factor to generate sufficient energy for pacemakers using heartbeat vibrations. It is shown that the natural frequency of the small-scale device is less than 20 Hz due to its unique fan-folded design. The experimental results show that the small-scale EH generates sufficient power for state of the art pacemakers. The 1 cm EH with18.4 gr tip mass generates more than16 W of power from a normal heartbeat waveform. The robustness of the device to the heart rate is also studied by measuring the relation between the power output and the heart rate.
Two-year performance study of porous, thermoset, shape memory polyurethanes intended for vascular medical devices
The long-term shape-recovery behavior of shape memory polymers has often been shown to be dependent on the length of time the material has been stored in the secondary shape. Typically, recovery performance and shape fixity will decrease with increased time in the secondary shape. In medical materials, a shelf-life is crucial to establish as it sets the upper threshold for device performance in a clinical setting, and a reduction in shape recovery would limit the development of SMP medical devices. Here, we present a two-year study of strain recovery, strain fixity, and shape recovery kinetics for passively and actively actuated SMPs intended for vascular devices. While kinetic experiments using immersion DMA indicate slight material relaxation and a decrease in the time to recovery, these changes are not found for bulk recovery experiments. The results indicate that a two-year shelf-life for these SMPs is very reasonable, as there is no change in the recovery kinetics, strain recovery, or strain fixity associated with this aging time. Further, a thermal accelerated aging test is presented for more rapid testing of the shape memory behavior of these SMPs and is compared with the real time aging results, indicating that this test is a reasonable indicator of the two-year behavior.
Design, Modeling and Characterization of A Novel Meso-Scale SMA-Actuated Torsion Actuator
This paper presents our work on design, modeling and characterization of a novel shape memory alloy (SMA) actuated torsion actuator for meso-scale robots. Development of a miniature torsion actuator is challenging, but it can enhance the agility and enlarge the workspace of meso-scale robots. This torsion actuator comprises of a pair of antagonistic SMA torsion springs, which bi-directionally actuate the actuator by Joule heating and natural cooling. First, the mechanical design of the torsion actuator is presented, followed by the fabrication of SMA torsion springs. Then, we present the constitutive model of the SMA torsion spring with an analysis of its strain change, and derive a quasi-static model with the Coulomb friction torque for this torsion actuator. Finally, a series of characterization experiments are conducted on the SMA torsion spring and the torsion actuator prototype to determine the values of all model parameters. This work shows that the properties of the SMA-actuated torsion actuator can be appropriately characterized by experiments and the actuator is feasible for robotics applications.
Feasibility of Crosslinked Acrylic Shape Memory Polymer for a Thrombectomy Device
To evaluate the feasibility of utilizing a system of SMP acrylates for a thrombectomy device by determining an optimal crosslink density that provides both adequate recovery stress for blood clot removal and sufficient strain capacity to enable catheter delivery.
INDIRECT INTELLIGENT SLIDING MODE CONTROL OF A SHAPE MEMORY ALLOY ACTUATED FLEXIBLE BEAM USING HYSTERETIC RECURRENT NEURAL NETWORKS
This paper introduces an indirect intelligent sliding mode controller (IISMC) for shape memory alloy (SMA) actuators, specifically a flexible beam deflected by a single offset SMA tendon. The controller manipulates applied voltage, which alters SMA tendon temperature to track reference bending angles. A hysteretic recurrent neural network (HRNN) captures the nonlinear, hysteretic relationship between SMA temperature and bending angle. The variable structure control strategy provides robustness to model uncertainties and parameter variations, while effectively compensating for system nonlinearities, achieving superior tracking compared to an optimized PI controller.
A Wireless, Passive Load Cell based on Magnetoelastic Resonance
A wireless, battery-less load cell was fabricated based on the resonant frequency shift of a vibrating magnetoelastic strip when exposed to an AC magnetic field. Since the vibration of the magnetoelastic strip generated a secondary field, the resonance was remotely detected with a coil. When a load was applied to a small area on the surface of the magnetoelastic strip via a circular rod applicator, the resonant frequency and amplitude decreased due to the damping on its vibration. The force sensitivity of the load cell was controlled by changing the size of the force applicator and placing the applicator at different locations on the strip's surface. Experimental results showed the force sensitivity increased with a larger applicator placing near the edge of the strip. The novelty of this load cell is not only its wireless passive nature, but also the controllability of the force sensitivity.
The cochlea as a smart structure
The cochlea is part of the inner ear and its mechanical response provides us with many aspects of our amazingly sensitive and selective hearing. The human cochlea is a coiled tube, with two main fluid chambers running along its length, separated by a 35 mm-long flexible partition that has its own internal dynamics. A dispersive wave can propagate along the cochlea due to the interaction between the inertia of the fluid and the dynamics of the partition. This partition includes about 12 000 outer hair cells, which have different structures, on a micrometre and a nanometre scale, and act both as motional sensors and as motional actuators. The local feedback action of all these cells amplifies the motion inside the inner ear by more than 40 dB at low sound pressure levels. The feedback loops become saturated at higher sound pressure levels, however, so that the feedback gain is reduced, leading to a compression of the dynamic range in the cochlear amplifier. This helps the sensory cells, with a dynamic range of only about 30 dB, to respond to sounds with a dynamic range of more than 120 dB. The active and nonlinear nature of the dynamics within the cochlea give rise to a number of other phenomena, such as otoacoustic emissions, which can be used as a diagnostic test for hearing problems in newborn children, for example. In this paper we view the mechanical action of the cochlea as a smart structure. In particular a simplified wave model of the cochlear dynamics is reviewed that represents its essential features. This can be used to predict the motion along the cochlea when the cochlea is passive, at high levels, and also the effect of the cochlear amplifier, at low levels.
Solvent stimulated actuation of polyurethane-based shape memory polymer foams using dimethyl sulfoxide and ethanol
Solvent exposure has been investigated to trigger actuation of shape memory polymers (SMPs) as an alternative to direct heating. This study aimed to investigate the feasibility of using dimethyl sulfoxide (DMSO) and ethanol (EtOH) to stimulate polyurethane-based SMP foam actuation and the required solvent concentrations in water for rapid actuation of hydrophobic SMP foams. SMP foams exhibited decreased when submerged in DMSO and EtOH when compared to water submersion. Kinetic DMA experiments showed minimal or no relaxation for all SMP foams in water within 30 min, while SMP foams submerged in EtOH exhibited rapid relaxation within 1 min of submersion. SMP foams expanded rapidly in high concentrations of DMSO and EtOH solutions, where complete recovery over 30 min was observed in DMSO concentrations greater than 90% and in EtOH concentrations greater than 20%. This study demonstrates that both DMSO and EtOH are effective at triggering volume recovery of polyurethane-based SMP foams, including in aqueous environments, and provides promise for use of this actuation technique in various applications.
Using an elastic magnifier to increase power output and performance of heart-beat harvesters
Embedded piezoelectric energy harvesting (PEH) systems in medical pacemakers have been a growing and innovative research area. The goal of these systems, at present, is to remove the pacemaker battery, which makes up 60%-80% of the unit, and replace it with a sustainable power source. This requires that energy harvesting systems provide sufficient power, 1-3 W, for operating a pacemaker. The goal of this work is to develop, test, and simulate cantilevered energy harvesters with a linear elastic magnifier (LEM). This research hopes to provide insight into the interaction between pacemaker energy harvesters and the heart. By introducing the elastic magnifier into linear and nonlinear systems oscillations of the tip are encouraged into high energy orbits and large tip deflections. A continuous nonlinear model is presented for the bistable piezoelectric energy harvesting (BPEH) system and a one-degree-of-freedom linear mass-spring-damper model is presented for the elastic magnifier. The elastic magnifier will not consider the damping negligible, unlike most models. A physical model was created for the bistable structure and formed to an elastic magnifier. A hydrogel was designed for the experimental model for the LEM. Experimental results show that the BPEH coupled with a LEM (BPEH + LEM) produces more power at certain input frequencies and operates a larger bandwidth than a PEH, BPEH, and a standard piezoelectric energy harvester with the elastic magnifier (PEH + LEM). Numerical simulations are consistent with these results. It was observed that the system enters high-energy and high orbit oscillations and that, ultimately, BPEH systems implemented in medical pacemakers can, if designed properly, have enhanced performance if positioned over the heart.
Core-free rolled actuators for Braille displays using P(VDF-TrFE-CFE)
Refreshable Braille displays require many small diameter actuators to move the pins. The electrostrictive P(VDF-TrFE-CFE) terpolymer can provide the high strain and actuation force under modest electric fields that are required for this application. In this paper, we develop core-free tubular actuators and integrate them into a 3 × 2 Braille cell. The terpolymer films are solution cast, stretched to 6 m thick, electroded, laminated into a bilayer, rolled into a 2 mm diameter tube, bonded, and provided with top and bottom contacts. Experimental testing of 17 actuators demonstrates significant strains (up to 4%) and blocking forces (1 N) at moderate electric fields (100 MV m). A novel Braille cell is designed and fabricated using six of these actuators.
Improving the magnetoelectric performance of Metglas/PZT laminates by annealing in a magnetic field
A comprehensive investigation of magnetostriction optimization in Metglas 2605SA1 ribbons is performed to enhance magnetoelectric performance. We explore a range of annealing conditions to relieve remnant stress and align the magnetic domains in the Metglas, while minimizing unwanted crystallization. The magnetostriction coefficient, magnetoelectric coefficient, and magnetic domain alignment are correlated to optimize magnetoelectric performance. We report on direct magnetostriction observed by in-plane Doppler vibrometer and domain imagining using scanning electron microscopy with polarization analysis for a range of annealing conditions. We find that annealing in an oxygen-free environment at 400 °C for 30 min yields an optimal magnetoelectric coefficient, magnetostriction and magnetostriction coefficient. The optimized ribbons had a magnetostriction of 50.6 ± 0.2 m m and magnetoelectric coefficient of 79.3 ± 1.5 m m mT. The optimized Metglas 2605SA1 ribbons and PZT-5A (d mode) sensor achieves a magnetic noise floor of approximately 600 pT Hz at 100 Hz and a magnetoelectric coefficient of 6.1 ± 0.03 MV m T.