SYNTHESIS AND BIOLOGICAL ACTIVITY OF SULFUR COMPOUNDS SHOWING STRUCTURAL ANALOGY WITH COMBRETASTATIN A-4
We extended our previous exploration of sulfur bridges as bioisosteric replacements for atoms forming the bridge between the aromatic rings of combretastatin A-4. Employing coupling reactions between 5-iodo-1,2,3-trimethoxybenzene and substituted thiols, followed by oxidation to sulfones with -CPBA, different locations for attaching the sulfur atom to ring A through the synthesis of nine compounds were examined. Antitubulin activity was performed with electrophoretically homogenous bovine brain tubulin, and activity occurred with the 1,2,3-trimethoxy-4-[(4-methoxyphenyl)thio]benzene (), while the other compounds were inactive. The compounds were also tested for leishmanicidal activity using promastigote forms of Leishmania braziliensis (MHOM/BR175/M2904), and the greatest activity was observed with 1,2,3-trimethoxy-4-(phenylthio)benzene () and 1,2,3-trimethoxy-4-[(4-methoxyphenyl) sulfinyl]benzene ().
SYNTHESIS AND BIOLOGICAL EVALUATION OF BIARYL ANALOGS OF ANTITUBULIN COMPOUNDS
This paper reports the synthesis of methanones and esters bearing different substitution patterns as spacer groups between aromatic rings. This series of compounds can be considered phenstatin analogs. Two of the newly synthesized compounds, 5a and 5c, strongly inhibited tubulin polymerization and the binding of [(3)H] colchicine to tubulin, suggesting that, akin to phenstatin and combretastatin A-4, they can bind to tubulin at the colchicine site.