Plasma Processes and Polymers

Oral SARS-CoV-2 reduction by local treatment: A plasma technology application?
von Woedtke T, Gabriel G, Schaible UE and Bekeschus S
The SARS-CoV-2 pandemic reemphasized the importance of and need for efficient hygiene and disinfection measures. The coronavirus' efficient spread capitalizes on its airborne transmission routes via virus aerosol release from human oral and nasopharyngeal cavities. Besides the upper respiratory tract, efficient viral replication has been described in the epithelium of these two body cavities. To this end, the idea emerged to employ plasma technology to locally reduce mucosal viral loads as an additional measure to reduce patient infectivity. We here outline conceptual ideas of such treatment concepts within what is known in the antiviral actions of plasma treatment so far.
Cold atmospheric plasma for addressing the COVID-19 pandemic
Chen Z, Bai F, Jonas SJ and Wirz RE
The coronavirus disease 2019 (COVID-19) pandemic has greatly stressed the global community, exposing vulnerabilities in the supply chains for disinfection materials, personal protective equipment, and medical resources worldwide. Disinfection methods based on cold atmospheric plasma (CAP) technologies offer an intriguing solution to many of these challenges because they are easily deployable and do not require resource-constrained consumables or reagents needed for conventional decontamination practices. CAP technologies have shown great promise for a wide range of medical applications from wound healing and cancer treatment to sterilization methods to mitigate airborne and fomite transfer of viruses. This review engages the broader community of scientists and engineers that wish to help the medical community with the ongoing COVID-19 pandemic by establishing methods to utilize broadly applicable CAP technologies.
Depyrogenation using Plasmas: A Novel Approach for Endotoxin Deactivation Using a Dielectric Barrier Discharge at Atmospheric Pressure
Bhatt N, Brier-Jones J, Trosan D, Brinkley C, Pecoraro J, Smallwood J, Crofton A, Hudson S, Kirsch W, Stapelmann K and Shannon S
Developing a low-cost depyrogenation process is vital in extending medical applicability of polymers that can be used in medicine. We present an overview of the plasma-based depyrogenation literature and address the need to develop a non-thermal plasma-based depyrogenation process for delicate materials such as chitosan. We present a low-cost plasma apparatus to treat chitosan powder in hermetically sealed bags. We decouple the experiments into two; depyrogenation experiments for dried standard endotoxin on glass slides, and chitosan modifications analysis through FTIR spectroscopy. We demonstrate depyrogenation efficacy with up to a 4-log reduction in endotoxin levels and discuss minor changes observed in plasma-treated chitosan.
State of the art in nonthermal plasma processing for biomedical applications: Can it help fight viral pandemics like COVID-19?
Misra N, Bhatt S, Arefi-Khonsari F and Kumar V
Plasma processing finds widespread biomedical applications, such as the design of biosensors, antibiofouling surfaces, controlled drug delivery systems, and in plasma sterilizers. In the present coronavirus disease (COVID-19) situation, the prospect of applying plasma processes like surface activation, plasma grafting, plasma-enhanced chemical vapor deposition/plasma polymerization, surface etching, plasma immersion ion implantation, crosslinking, and plasma decontamination to provide timely solutions in the form of better antiviral alternatives, practical diagnostic tools, and reusable personal protective equipment is worth exploring. Herein, the role of nonthermal plasmas and their contributions toward healthcare are timely reviewed to engage different communities in assisting healthcare associates and clinicians, not only to combat the current COVID-19 pandemic but also to prevent similar kinds of future outbreaks.
Nonthermal plasma as part of a novel strategy for vaccination
Mohamed H, Esposito RA, Kutzler MA, Wigdahl B, Krebs FC and Miller V
Vaccination has been one of the most effective health intervention mechanisms to reduce morbidity and mortality associated with infectious diseases. Vaccines stimulate the body's protective immune responses through controlled exposure to modified versions of pathogens that establish immunological memory. However, only a few diseases have effective vaccines. The biological effects of nonthermal plasma on cells suggest that plasma could play an important role in improving efficacy of existing vaccines and overcoming some of the limitations and challenges with current vaccination strategies. This review summarizes the opportunities for nonthermal plasma for immunization and therapeutic purposes.
Plasma medicine: Opportunities for nanotechnology in a digital age
Liu D, Szili EJ and Ostrikov KK
Advances in digital technologies have opened new opportunities for creating more reliable, time- and cost-effective, safer and mobile methods of diagnosing, managing and treating diseases. A few examples of advanced nano- and digital technologies are already FDA-approved for diagnosing and treating diseases. Plasma treatment is still emerging as a new healthcare technology, but it is showing a strong potential for treatment of many diseases including cancers and antimicrobial-resistant infections, with little or no adverse side effects. Here, we argue that with the ever-increasing complex healthcare challenges facing communities, including the ongoing COVID-19 pandemic, it is critical to consider combining unique properties of emerging healthcare technologies into a single multimodal treatment modality that could lead to unprecedented healthcare benefits. In this article, we focus on the healthcare opportunities created by establishing a nexus between plasma, nano- and digital technologies. We argue that the combination of plasma, nano- and digital technologies into a single multimodal healthcare package may significantly improve patient outcomes and comfort, and reduce the economic burden on community healthcare, as well as alleviate many problems related to overcrowded healthcare systems.
Reaction Chemistry Generated by Nanosecond Pulsed Dielectric Barrier Discharge Treatment is Responsible for the Tumor Eradication in the B16 Melanoma Mouse Model
Chernets N, Kurpad DS, Alexeev V, Rodrigues DB and Freeman TA
Melanoma is one of the most aggressive metastatic cancers with resistance to radiation and most chemotherapy agents. This study highlights an alternative treatment for melanoma based on nanosecond pulsed dielectric barrier discharge (nsP DBD). We show that a single nsP DBD treatment, directly applied to a 5 mm orthotopic mouse melanoma tumor, completely eradicates it 66% ( = 6; ≤ 0.05) of the time. It was determined that reactive oxygen and nitrogen species produced by nsP DBD are the main cause of tumor eradication, while nsP electric field and heat generated by the discharge are not sufficient to kill the tumor. However, we do not discount that potential synergy between each plasma generated component (temperature, electric field and reactive species) can enhance the killing efficacy.
Non-Equilibrium Dielectric Barrier Discharge Treatment of Mesenchymal Stem Cells: Charges and Reactive Oxygen Species Play the Major Role in Cell Death
Lin A, Chernets N, Han J, Alicea Y, Dobrynin D, Fridman G, Freeman TA, Fridman A and Miller V
Atmospheric pressure non-equilibrium plasmas are efficacious in killing both prokaryotic and eukaryotic cells. While the mechanism of plasma induced cell death has been thoroughly studied in prokaryotes, detailed investigation of plasma mediated eukaryotic cell death is still pending. When plasma is generated, four major components that interact with cells are produced: electric fields, radiation, charged particles, and neutral gas species. The goal of this study was to determine which of the plasma components are responsible for plasma-induced cell death by isolating and removing each from treatment. The C3H10T1/2 murine mesenchyme stem cell line was treated in six well plates, stained with Propidium Iodide to determine viability, and analyzed by image cytometry. Our results show that plasma-generated charges and reactive oxygen species are the primary contributors to cell death.
Fabrication and Characterization of Thermoresponsive Films Deposited by an RF Plasma Reactor
Lucero AE, Reed JA, Wu X and Canavan HE
Poly(-isopropyl acrylamide) (pNIPAM) undergoes a sharp property change in response to a moderate thermal stimulus at physiological temperatures. In this work, we constructed a radio frequency (RF) plasma reactor for the plasma polymerization of pNIPAM. RF deposition is a method that coats surfaces of any geometry producing surfaces that are sterile and uniform, making this technique useful for forming biocompatible films. The films generated are characterized using X-ray photoelectron spectroscopy (XPS), contact angles, cell culture, and interferometry. We find that a plasma with a decreasing series of power settings (i.e., from 100W to 1W) at a pressure of 140 millitorr yields the most favorable results.
Study of plasma modified-PTFE for biological applications: relationship between protein resistant properties, plasma treatment, surface composition and surface roughness
Vandencasteele N, Nisol B, Viville P, Lazzaroni R, Castner DG and Reniers F
PTFE samples were treated by low-pressure, O RF plasmas. The adsorption of BSA was used as a probe for the protein resistant properties. The exposure of PTFE to an O plasma leads to an increase in the chamber pressure. OES reveals the presence of CO, CO and F in the gas phase, indicating a strong etching of the PTFE surface by the O plasma. Furthermore, the high resolution C1s spectrum shows the appearance of CF, CF and C-CF components in addition to the CF component, which is consistent with etching of the PTFE surface. WCA as high as 160° were observed, indicating a superhydrophobic behaviour. AFM Images of surfaces treated at high plasma power showed a increase in roughness. Lower amounts of BSA adsorption were detected on high power, O plasma-modified PTFE samples compared to low power, oxygen plasma-modified ones.
Macrophage Serum-Based Adhesion to Plasma-Processed Surface Chemistry is Distinct from That Exhibited by Fibroblasts
Godek ML, Malkov GS, Fisher ER and Grainger DW
Plasma-polymerized films deposited from AlAm, HxAm, NVP, NVFA, AA and FC were compared to TCPS and PS surfaces in supporting cellular attachment, viability, and proliferation in serum-based culture in vitro for extended periods of time (>7 d). Surface patterns were created using multi-step depositions with physical masks. Cell adhesion in the presence of serum was compared for (monocyte-) macrophage and fibroblast cell lines. Cellular response was tracked over time, reporting adhesive behavior, proliferative rates, and morphological changes as a function of surface chemistry. Micropatterned surfaces containing different surface chemistries and functional groups (e.g. -NH(2), -COOH, -CF(3)) produced differential cell adhesive patterns for NIH 3T3 fibroblasts compared to J774A.1, RAW 264.7 or IC-21 (monocyte-) macrophage cell types. Significantly, macrophage adhesion is substantial on surfaces where fibroblasts do not adhere under identical culture conditions.