Respiratory system mechanics during noninvasive proportional assist ventilation: A model study
To assess the accuracies of airway resistance (Raw) and compliance (Crs) calculations using the expiratory time constant (RCexp) method as well as the accuracy of Pmus estimation in obstructive lung models.
Aerobic capacity of healthy young men associated with muscle oxygen extraction rate of the vastus lateralis muscle
The determinants of aerobic capacity are oxygen delivery by the cardiopulmonary system and oxygen extraction by the skeletal muscles. However, the impact of the oxygen extraction capacity of the skeletal muscle is unclear. This study aimed to examine the associations between aerobic capacity; muscle strength, endurance, mass, and quality; and oxygen extraction capacity.
Remobilization with whole-body vibration improves functionality, histomorphometric parameters, and AQP1 expression in the soleus muscle of Wistar rats
Whole-body vibration (WBV) is used to enhance physical performance in sports and rehabilitation. The present study analyzed the effects of remobilization with WBV on the soleus muscle of Wistar rats.
Electrophysiological detection of exam stress in health schools' students
Anxiety is a common issue among university students, many of them experience anxiety, depression, and stress during their school life. This study aimed to compare the acute physiological stress responses of students divided into two groups according to their perceived anxiety levels (positive test anxiety, PTA+, and negative test anxiety, PTA-). Heart rate variability (HRV) and electrodermal activity (EDA) were used to assess stress.Thirty-one healthy volunteers participated in the study. Participants completed anxiety assessments, including the Westside Test Anxiety Scale (WTAS), the State-Trait Anxiety Inventory (STAI), and the Test State Anxiety Inventory (TSAI). Based on their scores, participants were categorized into PTA+ and PTA- groups. All participants underwent 24-h continuous recordings of pulse and electrodermal activity (EDA) on two separate occasions: one day prior to a written exam and during a designated exam-free day serving as a baseline control.We compared the HRV and EDA data obtained on a regular day and on an exam day between the two groups. Results showed that the PTA+ group had significantly higher heart rate, stress index, low frequency, and short-term detrended fluctuation analysis (DFAα1) on the exam day. The tonic EDA component was also higher in the PTA+ group. Stress-related HRV and EDA parameters were negatively correlated with exam scores.In conclusion, the study found that physiological stress indicators obtained from HRV and EDA are associated with perceived exam anxiety in students.
Assisted oocyte activation significantly improves zygote formation, cleavage, and implantation rates in patients with a history of fertilization failures
Fertilization check performed at the 18th hour following classic in vitro fertilization procedure (IVF) or intracytoplasmic sperm injection (ICSI) is a critical stage in assisted reproduction. The success of the treatment is significantly reliant on the quantity of zygotes exhibiting two pronuclei. Consequently, low fertilization rates or complete fertilization failure are highly undesirable outcomes for both patients and reproductive specialists. Applying additional calcium ionophore for oocyte activation subsequent to ICSI may offer benefits and potentially enhance treatment outcomes, particularly for patients who have experienced low or absent fertilization rates (FR) in previous treatment cycles. The aim of the study is to evaluate the efficacy of Ca2+ ionophore application for oocyte activation.
Physiological characterization of a simulated kettlebell routine in experienced kettlebell athletes
Kettlebell as a sport has gained recognition worldwide. We characterized the physiological responses induced by a simulated kettlebell competition routine in experienced kettlebell athletes (n = 26) in a two-group, pre-post plus short-term follow-up, non-randomized experiment. The experimental group (EXP) included 13 kettlebell athletes, while the control group (CON) consisted of 13 individuals with prior recreational exposure to kettlebell activities. EXP performed a 10-minute-long, long-cycle kettlebell routine, whereas CON engaged in seated rest. Cardiovascular and neuromuscular outcomes were measured at rest, after warm-up, during exercise, at 0 (immediately post), 5 and 15 min into recovery. Group-by-time interactions revealed that the 10-minute-long, long-cycle kettlebell routine increased (P < 0.05) the levels of all outcomes (e.g. heart rate, blood pressure, blood lactate) (range of effect sizes: -0.9-8.9) with many outcomes remaining well above baseline at 5 and 15 min into recovery. A notable exception was a lack of change in maximal squat strength. Kettlebell experience and mass correlated with changes in oxygen uptake (ΔVO2) and in ventilation (ΔVT) (r = -0.70, 0.64, -0.87, and 0.73, respectively, P < 0.05) in EXP. Kettlebell routine evoked significant changes in all physiological variables (respiratory and cardiovascular), out of which the heart rate (HR), diastolic blood pressure (DBP), rate pressure product (RPP), and blood lactate (BL) outlasted the routine for at least 15 min. Future studies should longitudinally examine physiological responses to kettlebell training throughout a season. Long-cycle kettlebell routine adds to the repertoire of evidence-based exercise options for high-intensity exercise.
Effects of aerobic exercise at different intensities on articular cartilage in mice
Maintaining intrinsic articular cartilage homeostasis is essential for the health of cartilage. However, the impact of aerobic exercise of varying intensities on the articular cartilage homeostasis has never been studied. This study aims to elucidate the influence of different aerobic exercise intensities on the anabolic and catabolic processes within articular cartilage.
Effects of preparticipating hypohydration on cardiac burden in recreational athletes
The global temperature rise will have extensive consequences on our organ systems, but hypohydration caused by reduced water intake or increased water loss through sweating plays the most relevant role. Many studies have already demonstrated the association between hypohydration and impaired exercise performance, but data related to the cardiac burden of hypohydration are scarce. This study is a sub-investigation of our large, prospective, self-controlled trial on the effects of hypohydration on cardiopulmonary exercise capacity with previously published results. In the current sub-study, we analyzed the impact of hypohydration on cardiac burden in this cohort of fifty healthy, recreational athletes during cardiopulmonary exercise test.Therefore, each participant underwent cardiopulmonary exercise test with a standardized ramp protocol twice, once in hypohydrated state and once in euhydrated state as control, and the cardiac markers Troponin T, NT-pro-BNP and Chromogranin A were measured before and after the exercise test at each state. Mean age was 29.7 years and 34% of probands were female. Hypohydration led to a reduced body water, a significant decrease in oxygen uptake and lower levels of power output. Yet, Troponin T, NT-proBNP, Chromogranin A and lactate levels did not significantly differ between the two conditions.In this study cohort, decreased exercise capacity during hypohydration was more likely due to impaired cardiac output with diminished plasma volume rather than measurable cardiac stress from fluid deprivation. However, whether these data are generalizable to a diseased cohort is left unanswered and should be addressed in future randomized controlled trials.
Large inter-individual variability in force-velocity profile changes in response to acute high-load resistance training
While the acute effects of high-load resistance training on the force generating capacity of muscles have been widely examined, limited data exist on the relationship with the force-velocity profile (FV). Evidence suggests high sensitivity of the vertical FV profile to monitor changes in the muscle's mechanical properties according to the type of the exercise protocol. However, the interpretation of the findings seems not as straightforward. Therefore, the purpose of this study was to examine the effects of a high-load resistance training protocol on the muscle's mechanical properties during loaded jumps and on the vertical force-velocity profile (FV) in relation to maximal strength.
Peripheral inflammatory hyperalgesia is exacerbated in rats with metabolic disorders induced by a fructose diet
This study explored the effects of fructose-induced obesity and metabolic disorders on peripheral inflammatory hyperalgesia, employing quantitative sensory testing with the von Frey test and measuring paw edema to assess inflammatory responses. Wistar rats were administered water or 10% fructose solution ad libitum over a period of 5 weeks. After intraplantar administration of inflammatory agents such as carrageenan (1 mg/paw), lipopolysaccharide (LPS; 100 µg/paw), or prostaglandin E2 (PGE2, 100 ng/paw), we conducted mechanical hyperalgesia tests and paw edema evaluations. The fructose diet resulted in dyslipidemia, elevated insulin and leptin plasma levels, insulin resistance, and increased epididymal and retroperitoneal adiposity compared to control animals. In response to inflammatory agents, the fructose group displayed significantly enhanced peripheral hyperalgesia and more pronounced paw edema. Our results demonstrate that fructose not only contributes to the development of obesity and metabolic disorder but also exacerbates peripheral inflammatory pain responses by enhancing prostaglandin sensitivity.
Treatment of type 2 diabetes mellitus in the elderly - Special considerations
Type 2 diabetes is a frequent chronic disease. Given its strong positive association with older age, it is a significant public health issue in elderly populations. Furthermore, the aging of the population, driven by increasing life expectancy in high and middle-income countries leads to an increasing prevalence of diabetes.Although the same diagnostic criteria apply to the elderly and to younger people, there are unique aspects to the care for elderly type 2 diabetes patients. Both treatment goals and preferred medications, as well as non-pharmacological approaches should be adjusted in the elderly. For example, increasing the amount of physical activity may encounter difficulties, while introducing an appropriate diet may be more challenging. The patients' therapeutic adherence requires special attention due to cognitive and physical limitations. The most important treatment goal is to avoid hypoglycemia. Frailty, social and economic issues, comorbidities and the consequent polypharmacy frequently causing drug-drug interactions, as well as the increased danger of drug toxicity due to renal failure are only some of the problems that make the health care for old diabetes patients extremely difficult. Adequate care requires cooperation from a multidisciplinary team of health care professionals.Acute diabetes complications have a higher mortality in the elderly, thus close attention must be paid to avoid them. Family members should be involved in the care of elderly diabetes patients, and it is recommended to educate them on clinical signs of complications. Regular care for the patients including feedback on quality of life and early signs of health issues are essential.
Causal association between urine albumin-to-creatinine ratio and risk of colorectal cancer: A two-sample Mendelian randomization study
Previous observational studies have investigated the association between urinary albumin excretion and the risk of colorectal cancer (CRC), but the results have been inconsistent. This study aimed to explore the causal association between urine albumin-to-creatinine ratio (ACR) and CRC risk through a two-sample Mendelian randomization (MR) analysis. The genome-wide association study (GWAS) data of ACR (n = 382,500) and CRC (CRC: 6,509 cases and 287,137 controls) were obtained from the IEU OpenGWAS project website and the FinnGen database, respectively. The TwoSampleMR and MR-PRESSO R packages were used to search for and analyze genetic variations that served as instrumental variables for ACR. The odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated using the inverse-variance weighted method, MR-Egger, and weighted median. Genetically predicted ACR was not associated with CRC risk (all P > 0.05). Further analysis based on the site of onset (colon or rectum) also did not show a significant association (all P > 0.05). MR-PRESSO, MR-Egger regression and leave-one-out sensitivity analysis all indicated that the current results were robust and reliable. These findings suggest that ACR does not affect CRC risk and may not be used as a marker of CRC risk in clinical practice. However, relevant studies especially in ethnically diverse populations are still needed to confirm the current findings.
RACGAP1 drives proliferation, migration and invasion and suppresses autophagy of gastric cancer cells via inhibiting SIRT1/Mfn2
Gastric cancer is the most frequent gastrointestinal malignancy with a poor prognosis. Rac GTPase activation protein 1 (RACGAP1) is a novel tumor promotor, whose detailed effect on gastric cancer remains to be further elucidated. Hence, this study identifies the action of RACGAP1 on gastric cancer and investigates the potential mechanism.
THAP9-AS1 promotes nasopharyngeal carcinoma progression through targeted regulation of the miR-185-5p/SOX13 axis
It has been reported that long non-coding RNA THAP9-AS1 exerts carcinogenic role by mediating miRNAs and target genes in various human cancers. However, whether THAP9-AS1 influences the progression of nasopharyngeal carcinoma (NPC) remains unknown.
Effect of folic acid on isoprenaline-induced myocardial injury in rats
Isoprenaline (ISO), a synthetic catecholamine and a β-adrenoceptor agonist, is widely used to develop an experimental model of myocardial injury (MI) in rats. The leading hypothesis for ISO-induced MI in rats is that it results from catecholamine overstimulation, oxidative stress, inflammatory responses, and development of cardiomyopathy during ISO administration. Folic acid (FA) reduces oxidative stress, improves endothelial function and prevents apoptosis, thereby contributing to cardiovascular protection. This study aimed to investigate the potentially protective effect of FA pretreatment on ISO-induced MI in rats.
Visually evoked local field potential changes in the caudate nucleus are remarkably more frequent in awake, behaving cats than in anaesthetized animals
Previous results show that halothane gas anaesthesia has a suppressive effect on the visually evoked single-cell activities in the feline caudate nucleus (CN). In this study, we asked whether the low-frequency neuronal signals, the local field potentials (LFP) are also suppressed in the CN of anaesthetized animals.To answer this question, we compared the LFPs recorded from the CN of two halothane-anaesthetized (1.0%), paralyzed, and two awake, behaving cats during static and dynamic visual stimulation. The behaving animals were trained to perform a visual fixation task.Our results denoted a lower proportion of significant power changes to visual stimulation in the CN of the anesthetized cats in each frequency range (from delta to beta) of the LFPs, except gamma. These differences in power changes were more obvious in static visual stimulation, but still, remarkable differences were found in dynamic stimulation, too. The largest differences were found in the alpha and beta frequency bands for static stimulation. Concerning dynamic stimulation, the differences were the biggest in the theta, alpha and beta bands.Similar to the single-cell activities, remarkable differences were found between the visually evoked LFP changes in the CN of the anaesthetized, paralyzed and awake, behaving cats. The halothane gas anaesthesia and the immobilization suppressed the significant LFP power alterations in the CN to both static and dynamic stimulation. These results suggest the priority of the application of behaving animals even in the analysis of the visually evoked low-frequency electric signals, the LFPs recorded from the CN.
Role of GPR81 in regulating intramuscular triglyceride storage during aerobic exercise in rats
Lactate, a metabolite of exercise, plays a crucial role in the body. In these studies, we aimed to investigate the role of G protein-coupled receptor 81 (GPR81), a specific receptor for lactate, in regulating lipid storage in the gastrocnemius muscle of rats. To achieve this, we measured the impact of sodium 3-hydroxybutyrate (3-OBA) concentration and time on the cAMP-PKA signaling pathway in the gastrocnemius muscles of rats. Our investigation involved determining the effects of administering 3-OBA at a concentration of 3 mmol L-1 just 15 min before exercise. As expected, exercise led to a notable increase in intramuscular lactate concentration in rats. However, injecting 3-OBA prior to exercise yielded intriguing results. It not only further augmented the cAMP-PKA signaling pathway but also boosted the expression of lipolysis-related proteins such as hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL). Simultaneously, it decreased the expression of fat-synthesizing proteins, including acetyl CoA carboxylase (ACC) and fatty acid synthase (FAS), while increasing the protein expression of cytochrome c oxidase subunit Ⅳ(COX Ⅳ) and the activity of citrate synthetase (CS). Unfortunately, there was no significant change observed in intramuscular triglyceride (IMTG) content. In summary, our findings shed light on the role of lactate in partially regulating intramuscular triglycerides during exercise.
Innovative prophylactic and therapeutic approaches in liver cirrhosis
Liver cirrhosis is the consequence of chronicisation and of the evolution of untreated liver diseases. The complexity of the disease and the complications it can cause have been and are still intensively researched, aiming to discover new therapies or improve existing ones for the effective management of liver cirrhosis. Currently, the treatment used is directed against the cause that caused the disease, if it is known; in advanced cases, liver transplantation is the only valid therapeutic option. Hepatoprotectors that are currently on the market are numerous, having as common properties the antioxidant, anti-inflammatory, stabilizing properties of the hepatocytic membrane; A few examples: the ethanolic extract of Curcuma longa, the extract from the plant called Sophora flavescens, the extract of Glycyrrhiza glabra, silymarin (extracted from Sylibum marianum), the extract of Ganoderma lucidum, etc. Liver cirrhosis is accompanied by generalized hypovitaminosis, so supplementing the diet with hydro- and liposoluble vitamins is mandatory. Protein-caloric malnutrition can be prevented by a hyperprotein diet, especially beneficial being the supplementation with branched-chain amino acids, which are also applicable in the prophylaxis and treatment of hepatic encephalopathy. Nanoparticles are a state-of-the-art therapeutic option, proving increased bioavailability, for example polydopamine nanoparticles loaded with l-arginine have been tested as therapy in liver cirrhosis. Among the innovative treatment directions in liver cirrhosis are hybrid products (e.g. hybrid polymer nanoparticles loaded with caffeic acid), cell cultures and artificial or bioartificial liver support.
Impact of endogenous analgesia triggered by acupuncture, stress, or noxious stimulation on REM sleep-deprived rats
Poor sleep increases pain, at least in part, by disrupting endogenous pain modulation. However, the efficacy of endogenous analgesia in sleep-deprived subjects has never been tested. To assess this issue, we chose three different ways of triggering endogenous analgesia: (1) acupuncture, (2) acute stress, and (3) noxious stimulation, and compared their ability to decrease the pronociceptive effect induced by REM-SD (Rapid Eye Movement Sleep Deprivation) with that to decrease inflammatory hyperalgesia in the classical carrageenan model. First, we tested the ability of REM-SD to worsen carrageenan-induced hyperalgesia: A low dose of carrageenan (30 µg) in sleep-deprived Wistar rats resulted in a potentiated hyperalgesic effect that was more intense and longer-lasting than that induced by a higher standard dose of carrageenan (100 µg) or by REM-SD alone. Then, we found that (1) acupuncture, performed at ST36, completely reversed the pronociceptive effect induced by REM-SD or by carrageenan; (2) immobilization stress completely reversed the pronociceptive effect of REM-SD, while transiently inhibited carrageenan-induced hyperalgesia; (3) noxious stimulation of the forepaw by capsaicin also reversed the pronociceptive effect of REM-SD and persistently increased the nociceptive threshold above the baseline in carrageenan-treated animals. Therefore, acupuncture, stress, or noxious stimulation reversed the pronociceptive effect of REM-SD, while each intervention affected carrageenan-induced hyperalgesia differently. This study has shown that while sleep loss may disrupt endogenous pain modulation mechanisms, it does not prevent the activation of these mechanisms to induce analgesia in sleep-deprived individuals.
Phosphorylation of tau protein based on the activity of kinases and phosphatases in various forms of synaptic plasticity
The aim of this study is to show the relationship between the change in the strengthening of synaptic plasticity and tau phosphorylation and tau-kinases and phosphatase. The averages of the field excitatory-postsynaptic potential (fEPSP) and population spike (PS) in the last 5 min were used as a measure of LTP, LTD and MP. Total and phosphorylated levels of tau, kinases and phosphatases were evaluated by western blot and mRNA levels were evaluated by RT-qPCR. The stimulation of synapses by HFS and LFS+HFS increased the phosphorylation of total-tau and phospho-tau at the Thr181, Ser202/Thr205, Ser396 and Ser416 residues, and these were accompanied by increased enzymatic activity of Akt, ERK1/2. The increased phosphorylation of tau may mediate maintenance of LTP. If the increase in phosphorylation of tau cannot be prevented, together with inhibition of the subsequent LTP, this may indicate that the physiological role of hyperphosphorylated tau in synaptic plasticity may extend to pathological processes.
The effectiveness of an mHealth intervention on diabetes risk factors and body composition
Early identification and lifestyle intervention is beneficial for people with risk for diabetes. The aim of this study was to evaluate the risk of type 2 diabetes (T2D) in healthy overweight or obese women using the FINDRISC score and a twelve-week long mobile app-based lifestyle intervention.Fifty-four subjects were involved and forty-eight were analysed, n = 28 in the intervention group (online group: OG) and n = 20 in the control group (CG). Body composition was assessed using the InBody 720 device and diabetes risk was evaluated with the Finnish Diabetes Risk Questionnaire. The calorie intake and macronutrients were evaluated by a 3-day diary. Group differences and pre- and post-results were analysed using student t-tests by TIBCO Statistica 13.40.14.Significantly decreased body mass index (28.0 ± 2.5 kg m-2 vs 25.8 ± 4.3 kg m-2, P = 0.00), body fat percentage (37.5 ± 6.3% vs 34.1 ± 5.9%, P = 0.03), waist circumference (100.8 ± 7.2 cm vs 94.7 ± 8.2 cm, P = 0.00) and visceral fat (124.0 ± 29.2 cm³ vs 109.0 ± 24.6 cm³, P = 0.04) were found in the OG. By the end of the programme, both groups showed significant decrease in food consumption, daily calorie intake (OG: 2,348.6 ± 348.0 vs 1,483.1 ± 114.4, CG: 2,372.4 ± 464.2 vs 1,654.1 ± 201.3 kcal day-1, P = 0.00), fibre (OG: 19.5 ± 3.7 vs 26.1 ± 3.4, CG: 17.8 ± 3.9 vs 22.0 ± 4.8 g day-1, P = 0.00) and cholesterol consumption (OG: 365.2 ± 58.9 vs 266.2 ± 65.8, CG: 377.4 ± 72.1 vs 269.2 ± 42.7 mg day-1, P = 0.00). OG had a more significant reduction in body mass index (P = 0.03) and body fat percentage (P = 0.04) values at the end of the programme compared to the control group.In this study, it was found that mHealth intervention is a useful and effective method in the Hungarian female population. Further studies are needed to investigate modifications of this intervention to achieve more health-related effects.