Electrical in-situ characterisation of interface stabilised organic thin-film transistors
We report on the electrical in-situ characterisation of organic thin film transistors under high vacuum conditions. Model devices in a bottom-gate/bottom-contact (coplanar) configuration are electrically characterised in-situ, monolayer by monolayer (ML), while the organic semiconductor (OSC) is evaporated by organic molecular beam epitaxy (OMBE). Thermal SiO with an optional polymer interface stabilisation layer serves as the gate dielectric and pentacene is chosen as the organic semiconductor. The evolution of transistor parameters is studied on a bi-layer dielectric of a 150 nm of SiO and 20 nm of poly((±)endo,exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, diphenylester) (PNDPE) and compared to the behaviour on a pure SiO dielectric. The thin layer of PNDPE, which is an intrinsically photo-patternable organic dielectric, shows an excellent stabilisation performance, significantly reducing the calculated interface trap density at the OSC/dielectric interface up to two orders of magnitude, and thus remarkably improving the transistor performance.
Ambipolar inverters with natural origin organic materials as gate dielectric and semiconducting layer
Thin film electronics fabricated with non-toxic and abundant materials are enabling for emerging bioelectronic technologies. Herein complementary-like inverters comprising transistors using 6,6'-dichloroindigo as the semiconductor and trimethylsilyl-cellulose (TMSC) films on anodized aluminum as bilayer dielectric layer are demonstrated. The inverters operate both in the first and third quadrant, exhibiting a maximum static gain of 22 and a noise margin of 58% at a supply voltage of 14 V. (© 2015 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim).
Growth and properties of Li, Ta modified (K,Na)NbO lead-free piezoelectric single crystals
Li, Ta modified (K,Na)NbO single crystals with the size of 18 mm × 18 mm × 10 mm were successfully grown by top-seeded solution growth method, with orthorhombic-tetragonal phase transition temperature ~79 °C and Curie temperature ~276 °C. The electromechanical coupling factors and were found to be ~88% and ~65%, respectively. The piezoelectric coefficient for the [001] poled crystals reached 255 pC/N. In addition, the electromechanical coupling factor exhibited high stability over the temperature range of -50 °C to 70 °C, making these lead free crystals good candidates for electromechanical applications.
Optical probe for surface and subsurface defects induced by ion bombardment
We demonstrate that reflectance difference spectroscopy (RDS) is sensitive to defects induced by ion bombardment, located either in the topmost layer or in the subsurface region. Most importantly, these two kinds of defects can be spectrally discriminated, since the corresponding signatures in the RD spectrum arise from perturbations of different types of electronic states: The defects in the topmost surface layer mainly lead to a quenching of the optical anisotropy related to surface states, whereas the subsurface defects strongly affect the optical anisotropy originating from transitions between surface-modified bulk electronic states. Consequently, RDS can be used to simultaneously monitor the defects in the topmost surface layer and in the subsurface region during ion bombardment and thermal annealing. [Formula: see text] Characteristic RD spectra and the corresponding STM images for a Cu(110) substrate before and after healing of the subsurface defects.