Nucleic Acid Therapeutics

Hepatotoxicity Reduction Profiles of Antisense Oligonucleotides Containing Amido-Bridged Nucleic Acid and 2'-O,4'-C-Spirocyclopropylene Bridged Nucleic Acid
Kawanobe T, Asano S, Kandori H, Aoki M, Shrestha AR, Sekiguchi K, Yokoyama K, Fukuda R and Umemoto T
Amido-bridged nucleic acid (AmNA) and a 2'-O,4'-C-spirocyclopropylene bridged nucleic acid (scpBNA) are bridged nucleic acid analogs with high binding affinity toward complementary strands along with high nuclease resistance. AmNA and scpBNA have been developed to overcome phosphorothioate modified gapmer hepatotoxicity, while the mechanism of reducing hepatotoxicity still remains unknown. Here, we found that antisense oligonucleotides (ASOs) with combination of AmNA, scpBNA, and phosphodiester (PO) bonds could significantly reduce hepatotoxicity in mice. Histopathological findings of the periportal spaces of the liver were observed only in the locked nucleic acid and AmNA-scpBNA groups, but not in the AmNA-scpBNA-PO group. Furthermore, bioinformatics and histopathological analysis revealed that the reduced hepatotoxicity might be related to mitochondrial abnormalities, such as decreased expression levels of Atp5o and Sdhb genes. Taken together, the results of this study demonstrated that AmNA, scpBNA, and PO modification are able to reduce hepatotoxicity for improving the potential of ASOs.
Mechanistic Insights into Hybridization-Based Off-Target Activity of GalNAc-siRNA Conjugates
Agarwal S, Taft E, Gauthier M, Darcy J, Buckowing K, Berman D, Davis WP, Rogers AB and Janas MM
Nonclinical safety screening of small interfering RNAs (siRNAs) conjugated to a trivalent -acetylgalactosamine (GalNAc) ligand is typically carried out in rats at exaggerated exposures in a repeat-dose regimen. We have previously shown that at these suprapharmacological doses, hepatotoxicity observed with a subset of GalNAc-siRNAs is largely driven by undesired RNA-induced silencing complex (RISC)-mediated antisense strand seed-based off-target activity, similar to microRNA-like regulation. However, the RISC component requirements for off-target activity of siRNAs have not been evaluated. Here, we evaluate the roles of major RISC components, AGO and TNRC6 (or GW182) proteins, in driving on- and off-target activity of GalNAc-siRNAs in hepatocytes, and . We demonstrate that knocking down AGO2, but not AGO1 or AGO4, is protective against GalNAc-siRNA-driven off-target activity and hepatotoxicity. As expected, knocking down AGO2, but not AGO1 or AGO4, reduces the on-target activity of GalNAc-siRNA. Similarly, knocking down TNRC6 paralogs, TNRC6A or TNRC6B, but not TNRC6C, is protective against off-target activity and hepatotoxicity while having minimal impact on the on-target activity of GalNAc-siRNA. These data indicate that while AGO2 is the only RISC component required for the on-target activity of GalNAc-siRNAs, the undesired off-target activity and hepatotoxicity of a subset of GalNAc-siRNAs are mediated via the RISC composed predominantly of AGO2 and TNRC6 paralogs TNRC6A and/or TNRC6B.
Assessing Hybridization-Dependent Off-Target Risk for Therapeutic Oligonucleotides: Updated Industry Recommendations
Andersson P, Burel SA, Estrella H, Foy J, Hagedorn PH, Harper TA, Henry SP, Hoflack JC, Holgersen EM, Levin AA, Morrison E, Pavlicek A, Penso-Dolfin L and Saxena U
Hybridization-dependent off-target (OffT) effects, occurring when oligonucleotides bind via Watson-Crick-Franklin hybridization to unintended RNA transcripts, remain a critical safety concern for oligonucleotide therapeutics (ONTs). Despite the importance of OffT assessment of clinical trial ONT candidates, formal guidelines are lacking, with only brief mentions in Japanese regulatory documents (2020) and US Food and Drug Administration (FDA) recommendations for hepatitis B virus treatments (2022). This article presents updated industry recommendations for assessing OffTs of ONTs, building upon the 2012 Oligonucleotide Safety Working Group (OSWG) recommendations and accounting for recent technological advancements. A new OSWG subcommittee, comprising industry experts in RNase H-dependent and steric blocking antisense oligonucleotides and small interfering RNAs, has developed a comprehensive framework for OffT assessment. The proposed workflow encompasses five key steps: (1) OffT identification through complementarity prediction and transcriptomics analysis, (2) focus on cell types with relevant ONT activity, (3) verification and margin assessment, (4) risk assessment based on the OffT biological role, and (5) management of unavoidable OffTs. The authors provide detailed considerations for various ONT classes, emphasizing the importance of ONT-specific factors such as chemistry, delivery systems, and tissue distribution in OffT evaluation. The article also explores the potential of machine learning models to enhance OffT prediction and discusses strategies for experimental verification and risk assessment. These updated recommendations aim to improve the safety profile of ONTs entering clinical trials and to manage unavoidable OffTs. The authors hope that these recommendations will serve as a valuable resource for ONT development and for the forthcoming finalization of the FDA draft guidance and the International Council for Harmonization S13 guidance on Nonclinical Safety Assessment of Oligonucleotide-Based Therapeutics.
BMN 351-Induced Exon Skipping and Dystrophin Expression in Skeletal and Cardiac Muscle Lead to Preservation of Motor Function in a Mouse Model of Exon 51 Skip-Amenable Duchenne Muscular Dystrophy
Oppeneer T, Qi Y, Henshaw J, Larimore K, Puoliväli J, Carter C, Fant P, Brennan S, Wetzel LA, Sigg MA and O'Neill CA
Duchenne muscular dystrophy (DMD) is caused by mutations of the gene that prevent the expression of functional dystrophin protein. BMN 351 is an antisense oligonucleotide (ASO) designed to induce skipping of exon 51 of dystrophin pre-mRNA and production of internally deleted but functional dystrophin. We determined whether extended-term BMN 351 dosing leads to exon skipping, dystrophin production, and improved motor function in hDMDdel52/ mice containing a human exon 52-deleted transgene. Weekly intravenous doses of vehicle, 6 mg/kg BMN 351, or 18 mg/kg BMN 351 were administered for 25 weeks, and samples were analyzed 4 and 12 weeks post-dosing. BMN 351 produced dose-dependent exon skipping levels in the heart and quadriceps muscles, accompanied by dose-dependent increases in mean dystrophin levels of 17% to 55% 12 weeks post-dosing. Compared with vehicle-treated hDMDdel52/ mice, BMN 351 ameliorated DMD-related histopathologic changes in the gastrocnemius muscle and heart. Both BMN 351 doses preserved fine motor kinematics, which was worse in vehicle-treated hDMDdel52/ mice compared with wild-type 4 and 12 weeks post-dosing. Liver samples demonstrated findings consistent with ASO accumulation, to which mice are considered especially sensitive compared to humans and other non-clinical species. These results support further non-clinical and clinical development of BMN 351.
Targeting a Novel Site in Exon 51 with Antisense Oligonucleotides Induces Enhanced Exon Skipping in a Mouse Model of Duchenne Muscular Dystrophy
Oppeneer T, Qi Y, Henshaw J, Larimore K, Melton A, Puoliväli J, Carter C, Fant P, Brennan S, Wetzel LA, Sigg MA, Crawford BE, Magat J, Froelich S, Woloszynek JC and O'Neill CA
Exon skipping with antisense oligonucleotides (ASOs) can correct disease-causing mutations of Duchenne muscular dystrophy (DMD) through RNA-targeted splice correction. This correction restores the reading frame and supports expression of near full-length dystrophin. First-generation exon 51-skipping ASOs targeted the same binding site, with limited clinical efficacy. We characterized a novel binding site within exon 51 that induced highly efficient exon skipping. A precursor ASO (AON-C12) and clinical ASO (BMN 351) were designed using 2'--methyl-modified phosphorothioate (2'OMePS) RNA and locked nucleic acids. hDMDdel52/ mice were given AON-C12 or BMN 351 for 13 weeks and evaluated for molecular and phenotypic correction of dystrophin deficiency. BMN 351 treatment induced durable, dose-dependent levels of exon skipping and dystrophin production in all muscles evaluated. In the heart, 8 weeks after the last BMN 351 dose at 18 mg/kg, exon-skipped transcripts remained at 44.3% of total, and dystrophin levels were 21.8% of wild type. BMN 351 reached higher tissue concentrations and percent exon skipping in the heart than a clinically relevant peptide-conjugated phosphorodiamidate morpholino oligomer comparator. BMN 351 also improved gait scores and clinical and anatomical muscle pathology parameters compared with vehicle-treated hDMDdel52/ mice. The pharmacologic activity and safety of BMN 351 warrant further nonclinical and clinical development.
Combined 20-Hydroxyecdysone and Antisense-Mediated Exon Skipping Improve Functional Outcomes in a Mouse Model of Duchenne Muscular Dystrophy
Blitek M, Gastaldi C, Doisy M, Le Coz O, Tensorer T, Garcia L and Goyenvalle A
Duchenne muscular dystrophy (DMD) is a severe X-linked disorder caused by mutations in the DMD gene, resulting in a lack of dystrophin protein. This leads to progressive muscle wasting, cardiac and respiratory dysfunction, and premature death. Antisense oligonucleotide (ASO)-based therapies represent a promising approach to treating DMD, with several already approved by the FDA. However, the levels of dystrophin restoration achieved in clinical trials are often insufficient for meaningful therapeutic impact, highlighting the urgent need to enhance ASO efficacy. One potential strategy is to improve muscle pathophysiology, which is compromised in DMD due to cycles of necrosis and regeneration, chronic inflammation, and fibrotic and adipose tissue replacement. These disease characteristics may limit ASO efficiency. In this study, we evaluated the combination of tricyclo-DNA-ASO targeting the exon 23 with 20-hydroxyecdysone (20-E), a steroid hormone known to activate the protective arm of the renin-angiotensin-aldosterone system, enhance protein and ATP synthesis, and exhibit anti-inflammatory and antifibrotic properties. mice were treated with ASO alone or in combination with 20-E for 8 weeks. While both treatments restored similar levels of dystrophin and significantly improved functional outcomes such as the distance run and maximum speed in the treadmill exhaustion test, other improvements like the specific force and the decrease in the force drop after eccentric contraction were observed only with the combination therapy. Importantly, the cotreatment was well tolerated without liver or kidney toxicity. These findings provide proof of concept that combining 20-E with ASO therapy can ameliorate dystrophic pathology and improve muscle function in a DMD mouse model. By targeting both dystrophin restoration and muscle pathophysiology, this combined approach may offer a therapeutic strategy with the potential for meaningful clinical benefits, warranting further investigation and potential translation to patients.
Bioanalytical Assays for Oligonucleotide Therapeutics: Adding Antibody-Based Immunoassays to the Toolbox as an Orthogonal Approach to LC-MS/MS and Ligand Binding Assays
Chimento DP, Anderson AL, Fial I and Ascoli CA
Opportunities for More Tailored Approaches to Genotoxicity Testing and Carcinogenicity Strategy for Oligonucleotide Therapeutics: Outcome of an Industry Survey
Parry JD, Harper TA, Andersson P, Elloway JM, Holman NS, Achanzar WE, Lynch A, Tessier Y, Crosby M, Floettmann E, Coeffet M, Guérard M, Cnubben NHP, Irrechukwu ON, Wattrelos O and Yang Y
The Oligonucleotide Nonclinical Working Group (WG) of the European Federation of Pharmaceutical Industries and Associations conducted an industry survey to understand current practices and regulatory expectations for genotoxicity and carcinogenicity assessment of oligonucleotide therapeutics (ONTs), along with historical genotoxicity testing results. The survey, involving 29 pharmaceutical and biotechnology companies, revealed a consistent absence of genotoxicity across a diverse range of oligonucleotide classes and chemistries, consistent with previous observations. Despite the lack of genotoxicity, companies continue to follow standard testing guidelines, with only limited divergence. The survey data support the view that well-established ONT modifications can be considered "precedented," in terms of negligible genotoxic risk. As such, further testing of new ONT candidates containing only precedented modifications is unwarranted, when defined criteria are met. Further, we propose a pathway for novel ONT chemical modifications to achieve precedented status. The survey results also indicate that alternative strategies for carcinogenicity assessment (e.g., single-species testing) can be accepted by regulatory agencies under certain circumstances. Overall, the survey findings underscore the need for a more tailored approach to the nonclinical safety assessment of ONTs, and the WG proposes development of supplementary questions for International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use S2(R1) guidance to reflect this broad industry experience.
It is Time to Revisit miRNA Therapeutics
Corey DR
The recent Nobel Prizes awarded to Ambros and Ruvkun have refocused attention on microRNAs (miRNAs). The importance of miRNAs for basic science has always been clear, but the application to therapy has lagged behind. This delay has been made even more apparent by the accelerating pace of successful programs using duplex RNAs and antisense oligonucleotides to target mRNA. Why has progress been slow? A clear understanding of how miRNAs function in mammalian cells is obscured by the fact that miRNAs can exert their effects through multiple complex mechanisms. This gap in our knowledge has complicated progress in drug discovery. Better insights into the mechanism of miRNAs, more rigorous definitions of miRNAs, and more powerful tools for establishing the physical contacts necessary for miRNA action are now available. These advances lead to a central question for nucleic acid therapy-can miRNAs be productive targets for drug discovery and development?
Addressing the Needs of Nano-Rare Patients
Crooke ST
A Guide to Chemical Considerations for the Pre-Clinical Development of Oligonucleotides
O'Reilly D, van Roon-Mom W, Aartsma-Rus A and
Oligonucleotide therapeutics, a pioneering category of modern medicinal drugs, are at the forefront of utilizing innate mechanisms to modulate gene expression. With 18 oligonucleotide-based FDA-approved medicines currently available for treating various clinical conditions, this field showcases an innovative potential yet to be fully explored. Factors such as purity, formulation, and endotoxin levels profoundly influence the efficacy and safety of these therapeutics. Therefore, a thorough understanding of the chemical factors essential for producing high-quality oligonucleotides for preclinical studies is crucial in their development for further clinical application. This paper serves as a concise guide to these chemical considerations, aiming to inspire and equip researchers with the necessary knowledge to advance in this exciting and innovative field.
Mass Spectrometry as a Quantitative Tool for SpCas9 sgRNA Quality Control
Avila JD and Wang P
Mass spectrometry (MS) has long been used for quality control of oligonucleotide therapeutics, including single-guide RNAs (sgRNAs) for clustered regularly interspaced short palindromic repeats techniques. However, the application of MS is limited to qualitative assays in most cases. Here, we showed that electrospray-ionization quadrupole time-of-flight MS (ESI-QTOF-MS) assays can be quantitative for chemical species found in sgRNA samples. More specifically, using a 100-nt SpCas9 sgRNA as the example, we estimated that the limits of quantification for length variants in the range of N - 4 to N + 4 (i.e., 96-104 nucleotides) were equal to or lower than 1%. Our study highlighted the potential of ESI-QTOF in its application as a quality control method for sgRNA molecules.
Addressing the Challenges of Treating Patients with Heterozygous Gain of Function Mutations
Crooke ST
An Evaluation of First-in-Human Studies for RNA Oligonucleotides
Stern S, Wange RL and Rogers H
Most oligonucleotide therapeutics use Watson-Crick-Franklin base-pairing hybridization to target RNA and mitigate disease-related protein production. Using targets that were previously inaccessible to small molecules and biologics, synthetic nucleotides have provided treatments for severely debilitating and life-threatening diseases. However, these therapeutics possess unique pharmacologies that require specific considerations for their distribution, clearance, and other clinical pharmacology characteristics. Namely, one hurdle in the drug development of these therapeutics remains the prediction of human dose that results in exposures comparable with or below those seen at no observed adverse effect level in animals. For first-in-human (FIH) clinical trials, this often involves allometric scaling based on body surface area (BSA) or body weight (BW). In this study, we reviewed the current literature and surveyed elements across 16 approved oligonucleotide therapeutic New Drug Applications approved by the U.S. Food and Drug Administration in the period from September 1998 to January 2024, and 89 Investigational New Drug (IND) programs with available FIH clinical trials conducted from January 2015 to January 2024, to understand dose selection in early-stage development of oligonucleotide therapeutics. The surveyed elements across these programs include study design, route of administration, dosing regimen, interspecies scaling approach, and the most sensitive species. Of 89 IND programs and 16 approved therapeutics, intravenous and subcutaneous were the most common route of administration, no observable adverse event levels were frequently derived from nonhuman primates, BSA and BW were adjusted for in similar frequencies, patients were predominantly enrolled in FIH trials, and the most common design was a single or multiple ascending dose trial.
A Combined Fertility and Developmental Toxicity Study with an Antisense Oligonucleotide Targeting Murine Apolipoprotein C-III mRNA in Mice
Jeong JS, Rastogi A, Kim TW, Henry S, Hoffmaster CM, Kim SY, Kim W, Lee SY, Park JD, Wi IS, Yu WJ and Lee J
Here, we present the reproductive toxicology profile of ISIS 838707, a GalNAc-conjugated antisense oligonucleotide (ASO) targeting mouse Apolipoprotein C-III (ApoC-III) mRNA. ISIS 838707 was subcutaneously administered during the premating, mating, and gestation periods to male and female mice at 0, 5, 10, and 20 mg/kg/week. Key focus areas included fertility, reproductive cell functions, estrus cycle, tubal transport, implantation, embryo development stages, and teratogenic potential. We also investigated the toxicokinetics and target mRNA knockdown effects. The treatment was well-tolerated at all dose levels, with no overt toxicity. Treatment led to decreased total cholesterol and/or triglyceride levels at doses ≥5 mg/kg/week, concordant with effective knockdown of ApoC-III mRNA (>85% reduction at all dose levels). Toxicokinetic analysis revealed predominant distribution to the liver of parental animals and minimally to the placenta, with no detectable transfer to fetal liver. Despite these pharmacological effects, there were no discernible adverse impacts on developmental and reproductive functions. These findings suggest that ISIS 838707, while effective in modulating ApoC-III mRNA and lipid profiles, does not adversely impact on reproductive and developmental functions in mice. The study contributes insights into the safety profile of ASOs and reduction of ApoCIII expression, particularly in the context of reproductive and developmental health.
Characterization of the TLR9-Activating Potential of LNA-Modified Antisense Oligonucleotides
Riera-Tur I, Hinterdobler J, Maaske A, Sadewasser A, Schell M, Sekar J, Michel S, Klar R and Jaschinski F
Early characterization of the immunostimulatory potential of therapeutic antisense oligonucleotides (ASOs) is crucial. At present, little is known about the toll-like receptor 9 (TLR9)-mediated immunostimulatory potential of third-generation locked nucleic acid (LNA)-modified ASOs. In this study, we have systematically investigated the TLR9-activating potential of LNA-modified oligonucleotides using different mouse and human cell culture systems. Although it has been reported that LNA modifications as well as cytosine methylation of 5'-cytosine-phosphate-guanine-3' (CpG) motifs can reduce TLR9 stimulation by phosphorothioate (PTO)-modified oligonucleotides, we identified CpG-containing LNA gapmers with substantial TLR9-stimulatory activity. We further identified immunostimulatory LNA gapmers without CpG motifs. Unexpectedly, methylation of cytosines only within the CpG motif did not necessarily reduce but could even increase TLR9 activation. In contrast, systematic methylation of all cytosines reduced or even abrogated TLR9 activation in most cases. Context dependently, the introduction of LNA-modifications into the flanks could either increase or decrease TLR9 stimulation. Overall, our results indicate that TLR9-dependent immunostimulatory potential is an individual feature of an oligonucleotide and needs to be investigated on a case-by-case basis.
Peptide Nucleic Acid-Mediated Regulation of CRISPR-Cas9 Specificity
Carufe KEW, Economos NG and Glazer PM
Although CRISPR-Cas9 gene therapies have proven to be a powerful tool across many applications, improvements are necessary to increase the specificity of this technology. Cas9 cutting in off-target sites remains an issue that limits CRISPR's application in human-based therapies. Treatment of autosomal dominant diseases also remains a challenge when mutant alleles differ from the wild-type sequence by only one base pair. Here, we utilize synthetic peptide nucleic acids (PNAs) that bind selected spacer sequences in the guide RNA (gRNA) to increase Cas9 specificity up to 10-fold. We interrogate variations in PNA length, binding position, and degree of homology with the gRNA. Our findings reveal that PNAs bound in the region distal to the protospacer adjacent motif (PAM) site effectively enhance specificity in both on-target/off-target and allele-specific scenarios. In addition, we demonstrate that introducing deliberate mismatches between PNAs bound in the PAM-proximal region of the gRNA can modulate Cas9 activity in an allele-specific manner. These advancements hold promise for addressing current limitations and expanding the therapeutic potential of CRISPR technology.
Levels of Exon-Skipping Are Not Artificially Overestimated Because of the Increased Affinity of Tricyclo-DNA-Modified Antisense Oligonucleotides to the Target Exon
Doisy M, Vacca O, Saoudi A and Goyenvalle A
Antisense oligonucleotides (ASO) are very promising drugs for numerous diseases including neuromuscular disorders such as Duchenne muscular dystrophy (DMD). Several ASO drugs have already been approved by the US Food and Drug Administration for DMD and global efforts are still ongoing to improve further their potency, notably by developing new delivery systems or alternative chemistries. In this context, a recent study investigated the potential of different chemically modified ASO to induce exon-skipping in mouse models of DMD. Importantly, the authors reported a strong discrepancy between exon-skipping and protein restoration levels, which was mainly owing to the high affinity of locked nucleic acid (LNA) modifications to the target RNA, thereby interfering with the amplification of the unskipped product and resulting in artificial overamplification of the exon-skipped product. These findings urged us to verify whether a similar phenomenon could occur with tricyclo-DNA (tcDNA)-ASO that also display high-affinity properties to the target RNA. We thus ran a series of control experiments and demonstrate here that exon-skipping levels are not overestimated owing to an interference of tcDNA-ASO with the unskipped product in contrast to what was observed with LNA-containing ASO.
Near Sequence Homology Does Not Guarantee siRNA Cross-Species Efficacy
Rivera Flores IV, Monopoli K, Jackson S, Echeverria D, O'Reilly D, Brown RH and Khvorova A
Small interfering RNAs (siRNAs) represent a novel class of drugs capable of potent and sustained modulation of genes across various tissues. Preclinical development of siRNAs necessitates assessing efficacy and toxicity in animal models. While identifying therapeutic leads with cross-species activity can expedite development, it may compromise efficacy and be infeasible for certain gene targets. Here, we investigate whether deriving species-active siRNAs from potent human-targeting leads-an approach termed mismatch conversion-can yield potent compounds. We systematically altered potent siRNAs targeting human genes associated with diseases- (ALS), (inflammation), and (HD)-to generate species-matching variants with full complementarity to their target in NHPs, mice, rats, sheep, and dogs. Variants potency and efficacy were measured in corresponding cell lines. We demonstrate that sequence, position, and number of mismatches significantly influence the ability to generate potent species-active compounds via mismatch conversion. Across tested sequences, mismatch conversion strategy ability to identify a species-active lead varied from 0% to 70%. For , lead compounds identified from species-focus screening in mouse and dog cells were more potent than leads obtained from mismatch conversion. Thus, a focused screening of therapeutic lead and model compounds may represent a more reliable strategy for the clinical advancement of siRNAs.
Antisense Oligonucleotide STK-002 Increases OPA1 in Retina and Improves Mitochondrial Function in Autosomal Dominant Optic Atrophy Cells
Venkatesh A, McKenty T, Ali S, Sonntag D, Ravipaty S, Cui Y, Slate D, Lin Q, Christiansen A, Jacobson S, Kach J, Lim KH, Srinivasan V, Zinshteyn B, Aznarez I, Huryn LA, Li Z, Hufnagel RB, Liau G, Anderson K and Hoger J
Autosomal dominant optic atrophy (ADOA) is an inherited optic neuropathy most frequently associated with mutations. Most variants result in haploinsufficiency, and patient cells express roughly half of the normal levels of OPA1 protein. OPA1 is a mitochondrial GTPase that is essential for normal mitochondrial function. We identified and characterized STK-002, an antisense oligonucleotide (ASO) designed to prevent the incorporation of a naturally occurring alternatively spliced nonproductive exon in . STK-002 dose dependently reduced the inclusion of this exon, and increased OPA1 protein in human cells, including ADOA patient-derived fibroblasts. ADOA patient cells manifest reduced mitochondrial respiration, and treatment with STK-002 improved the parameters of mitochondrial respiratory function in these cells. Since STK-002 increases OPA1 through the wild-type allele, we assessed retinal OPA1 in wild-type cynomolgus monkeys and rabbits after intravitreal administration of STK-002 or a rabbit-specific surrogate. Increased OPA1 protein was produced in retinal tissue in both species at 4 weeks after ASO injection and persisted in monkeys at 8 weeks. STK-002 and enhanced OPA1 immunofluorescence were visualized in retinal ganglion cells of cynomolgus monkeys treated with the ASO. Cumulatively, these data support the progression of STK-002 toward the clinic as the first potential disease-modifying treatment for ADOA.
mRNA Nuclear Clustering Leads to a Difference in Mutant Huntingtin mRNA and Protein Silencing by siRNAs
Allen S, O'Reilly D, Miller R, Sapp E, Summers A, Paquette J, Echeverria Moreno D, Bramato B, McHugh N, Yamada K, Aronin N, DiFiglia M and Khvorova A
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by CAG repeat expansion in the first exon of the huntingtin gene (). Oligonucleotide therapeutics, such as short interfering RNA (siRNA), reduce levels of huntingtin mRNA and protein and are considered a viable therapeutic strategy. However, the extent to which they silence huntingtin mRNA in the nucleus is not established. We synthesized siRNA cross-reactive to mouse (wild-type) and human (mutant) in a divalent scaffold and delivered to two mouse models of HD. In both models, divalent siRNA sustained lowering of wild-type , but not mutant mRNA expression in striatum and cortex. Near-complete silencing of both mutant HTT protein and wild-type HTT protein was observed in both models. Subsequent fluorescent hybridization analysis shows that divalent siRNA acts predominantly on cytoplasmic mutant transcripts, leaving clustered mutant transcripts in the nucleus largely intact in treated HD mouse brains. The observed differences between mRNA and protein levels, exaggerated in the case of extended repeats, might apply to other repeat-associated neurological disorders.