Global dynamics of two-strain epidemic model with single-strain vaccination in complex networks
Contagious pathogens, such as influenza and COVID-19, are known to be represented by multiple genetic strains. Different genetic strains may have different characteristics, such as spreading more easily, causing more severe diseases, or even evading the immune response of the host. These facts complicate our ability to combat these diseases. There are many ways to prevent the spread of infectious diseases, and vaccination is the most effective. Thus, studying the impact of vaccines on the dynamics of a multi-strain model is crucial. Moreover, the notion of complex networks is commonly used to describe the social contacts that should be of particular concern in epidemic dynamics. In this paper, we investigate a two-strain epidemic model using a single-strain vaccine in complex networks. We first derive two threshold quantities, and , for each strain. Then, by using the basic tools for stability analysis in dynamical systems (i.e., Lyapunov function method and LaSalle's invariance principle), we prove that if and , then the disease-free equilibrium is globally asymptotically stable in the two-strain model. This means that the disease will die out. Furthermore, the global stability of each strain dominance equilibrium is established by introducing further critical values. Under these stability conditions, we can determine which strain will survive. Particularly, we find that the two strains can coexist under certain condition; thus, a coexistence equilibrium exists. Moreover, as long as the equilibrium exists, it is globally stable. Numerical simulations are conducted to validate the theoretical results.
On the global stability of a delayed epidemic model with transport-related infection
We study the global dynamics of a time delayed epidemic model proposed by Liu et al. (2008) [J. Liu, J. Wu, Y. Zhou, Modeling disease spread via transport-related infection by a delay differential equation, Rocky Mountain J. Math. 38 (5) (2008) 1525-1540] describing disease transmission dynamics among two regions due to transport-related infection. We prove that if an endemic equilibrium exists then it is globally asymptotically stable for any length of time delay by constructing a Lyapunov functional. This suggests that the endemic steady state for both regions is globally asymptotically stable regardless of the length of the travel time when the disease is transferred between two regions by human transport.
Dynamics of a Model of Allelopathy and Bacteriocin with a Single Mutation
In this paper we discuss a model of allelopathy and bacteriocin in the chemostat with a wild-type organism and a single mutant. Dynamical properties of this model show the basic competition between two microorganisms. A qualitative analysis about the boundary equilibrium, a state that microorganisms both vanish, is carried out. The existence and uniqueness of the interior equilibrium are proved by a technical reduction to the singularity of a matrix. Its dynamical properties are given by using the index theory of equilibria. We further discuss its bifurcations. Our results are demonstrated by numerical simulations.
The effect of incidence functions on the dynamics of a quarantine/isolation model with time delay
The problem of the asymptotic dynamics of a quarantine/isolation model with time delay is considered, subject to two incidence functions, namely standard incidence and the Holling type II (saturated) incidence function. Rigorous qualitative analysis of the model shows that it exhibits essentially the same (equilibrium) dynamics regardless of which of the two incidence functions is used. In particular, for each of the two incidence functions, the model has a globally asymptotically stable disease-free equilibrium whenever the associated reproduction threshold quantity is less than unity. Further, it has a unique endemic equilibrium when the threshold quantity exceeds unity. For the case with the Holling type II incidence function, it is shown that the unique endemic equilibrium of the model is globally asymptotically stable for a special case. The permanence of the disease is also established for the model with the Holling type II incidence function. Furthermore, it is shown that adding time delay to and/or replacing the standard incidence function with the Holling type II incidence function in the corresponding autonomous quarantine/isolation model with standard incidence (considered in Safi and Gumel (2010) [10]) does not alter the qualitative dynamics of the autonomous system (with respect to the elimination or persistence of the disease). Finally, numerical simulations of the model with standard incidence show that the disease burden decreases with increasing time delay (incubation period). Furthermore, models with time delay seem to be more suitable for modeling the 2003 SARS outbreaks than those without time delay.
Existence and stability of stationary solutions to spatially extended autocatalytic and hypercyclic systems under global regulation and with nonlinear growth rates
Analytical analysis of spatially extended autocatalytic and hypercyclic systems is presented. It is shown that spatially explicit systems in the form of reaction-diffusion equations with global regulation possess the same major qualitative features as the corresponding local models. In particular, using the introduced notion of the stability in the mean integral sense we prove the competitive exclusion principle for the autocatalytic system and the permanence for the hypercycle system. Existence and stability of stationary solutions are studied. For some parameter values it is proved that stable spatially non-uniform solutions appear.
Modeling the spread of bird flu and predicting outbreak diversity
Avian influenza, commonly known as bird flu, is an epidemic caused by H5N1 virus that primarily affects birds like chickens, wild water birds, etc. On rare occasions, these can infect other species including pigs and humans. In the span of less than a year, the lethal strain of bird flu is spreading very fast across the globe mainly in South East Asia, parts of Central Asia, Africa and Europe. In order to study the patterns of spread of epidemic, we made an investigation of outbreaks of the epidemic in one week, that is from February 13-18, 2006, when the deadly virus surfaced in India. We have designed a statistical transmission model of bird flu taking into account the factors that affect the epidemic transmission such as source of infection, social and natural factors and various control measures are suggested. For modeling the general intensity coefficient , we have implemented the recent ideas given in the article , [R. Howlett, Fitting the bill, Nature 439 (2006) 402], which describes the geographical spread of epidemics due to transportation of poultry products. Our aim is to study the spread of avian influenza, both in time and space, to gain a better understanding of transmission mechanism. Our model yields satisfactory results as evidenced by the simulations and may be used for the prediction of future situations of epidemic for longer periods. We utilize real data at these various scales and our model allows one to generalize our predictions and make better suggestions for the control of this epidemic.