The saNeuroGut Initiative: Investigating the gut microbiome and symptoms of anxiety, depression and posttraumatic stress
Common mental disorders, such as anxiety disorders, depression, and posttraumatic stress disorder (PTSD), present a substantial health and economic burden. The gut microbiome has been associated with these psychiatric disorders via the microbiome-gut-brain axis. However, previous studies have focused on the associations between the gut microbiome and common mental disorders in European, North American and Asian populations. As part of the saNeuroGut Initiative, we assessed associations between gut microbial composition and self-reported symptoms of anxiety, depression and posttraumatic stress among South African adults.
A glucocorticoid-mediated immunoregulatory circuit integrated at brain levels: our early studies and a present view
Background It was known since the 1940's that pharmacological administration of glucocorticoids can inhibit inflammatory and immune processes, and these hormones are still today among the most widely used therapeutic tools to treat diseases with immune components. However, it became clear later that endogenous glucocorticoids can either support or restrain immune processes. Summary Early studies showed that: a) endogenous levels of glucocorticoids can modulate immune cell activity; b) the immune response itself can stimulate the hypothalamus-pituitary-adrenal (HPA) axis to release glucocorticoids to levels that can exert immunoregulatory effects; c) immune products, later identified as cytokines, mediate this effect. On these bases, the existence of a glucocorticoid-mediated immunoregulatory circuit was proposed. It was also shown that increased levels of endogenous glucocorticoids exert protective effects during infections and other diseases with immune components. However, it was found in animal models and in humans that these effects can be blunted in several immune-linked diseases by defects at several levels, for example by glucocorticoid resistance or by adrenal insufficiency. Evidence was later provided that the glucocorticoid-mediated immunoregulatory circuit can also be activated by cytokines produced not only as consequence of immune stimulation but also following psycho/sensorial and physical stimuli. Thus, this circuit can be integrated at brain levels and, besides stimulating the HPA axis, cytokines can also affect synaptic plasticity, most likely via a tripartite synapse, with astrocytes as neuro-immune cells acting as the third component. Key Messages It is now well established that the glucocorticoid-mediated immunoregulatory circuit plays a central role in maintaining health. However, several variables can condition the efficacy of the effect of endogenous glucocorticoids. Furthermore, since cytokines and other immune products have many other neuro-endocrine and metabolic effects, other neuro-endocrine-immune circuits could simultaneously operate or become predominant during different pathologies. The consideration of these aspects might help to implement strategies to eventually decrease therapeutic doses of exogenous glucocorticoids.
Brain-Thymus Connections in Chagas Disease
The brain and the immune systems represent the two primary adaptive systems within the body. Both are involved in a dynamic process of communication, vital for the preservation of mammalian homeostasis. This interplay involves two major pathways: the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system.
Steering the Microbiota-Gut-Brain Axis by Antibiotics to Model Neuro-Immune-Endocrine Disorders
Over the last century, animal models have been employed to study the gut-brain axis and its relationship with physiological processes, including those necessary for survival, such as food intake and thermoregulation; those involved in diseases, ranging from inflammation to obesity; and those concerning the development of neurodegenerative diseases and neuropsychiatric disorders, such as Alzheimer's disease and autism spectrum disorder, respectively.
Serum Levels of the Steroid Hormone Dehydroepiandrosterone Are Associated with Psychological Trauma and Lymphocyte Telomere Integrity in Women Suffering from Depression
Emerging studies highlight the telomere system as an aging mechanism underlying the association between exposure to psychological trauma and the development of a wide range of physical and mental disorders, including major depressive disorder (MDD). Here, we investigated associations of circulating levels of the steroid hormone dehydroepiandrosterone (DHEA) with immune cell telomere length (TL) in the context of lifetime trauma exposure and MDD.
Impact of Sleep Deprivation on the Brain's Inflammatory Response Triggered by Lipopolysaccharide and Its Consequences on Spatial Learning and Memory and Long-Term Potentiation in Male Rats
Both sleep deprivation (SD) and inflammation can negatively affect cognitive function. This study aimed to investigate how SD impacts the brain's inflammatory response to lipopolysaccharide (LPS) and its subsequent effects on cognitive functions.
Thymus-Brain Connections in T-Cell Acute Lymphoblastic Leukemia
T-cell acute lymphoblastic leukemia (T-ALL) is a malignant hematologic disease caused by the transformation and uncontrolled proliferation of T-cell precursors. T-ALL is generally thought to originate in the thymus since lymphoblasts express phenotypic markers comparable to those described in thymocytes in distinct stages of development. Although around 50% of T-ALL patients present a thymic mass, T-ALL is characterized by peripheral blood and bone marrow involvement, and central nervous system (CNS) infiltration is one of the most severe complications of the disease.
Causal Histories of Psychological Factors and Cancer: From Psychosomatic Medicine to Neuroimmunomodulation
Establishing causal relationships is essential in biology and medicine. However, various notions of causality have been operationalized at different times in various fields of the life and health sciences. While this is expected from a history or sociology of science point of view, as different accounts may correspond to what is valued in terms of establishing causal relationships at different times as well as in different fields of biology and medicine, this may come as a surprise for a present-day actor in those fields. If, over time, causal accounts have not been fully dismissed, then they are likely to invite some form of, potentially salutary, explanatory pluralism.
Cytokines in Cerebrospinal Fluid and Chronic Pain in Humans: Past, Present, and Future
That neuroimmune interaction occurs in chronic pain conditions has been established for over a century, since the discovery of neurogenic inflammation in the periphery. However, the central aspects of neuroimmune interactions have not been fully appreciated until the late 1900s, when a growing interest in how cytokines in the cerebrospinal fluid (CSF) might be relevant in chronic pain conditions emerged. Since then, the field has evolved, and nowadays neuroinflammation is considered to be involved in the pathophysiology of chronic pain. Whether or not pain conditions can be called "neuroinflammatory" is a matter of debate. This review summarizes the results from studies investigating cytokines in the CSF in various pain conditions, and critically discusses neuroimmune aspects of pain conditions using previously proposed hallmarks of neuroinflammation as a framework.
Inflammatory Role of CCR1 in the Central Nervous System
Chemokine ligands and their corresponding receptors are essential for regulating inflammatory responses. Chemokine receptors can stimulate immune activation or inhibit/promote signaling pathways by binding to specific chemokine ligands. Among these receptors, CC chemokine receptor 1 (CCR1) is extensively studied as a G protein-linked receptor target, predominantly expressed in various leukocytes, and is considered a promising target for anti-inflammatory therapy. Furthermore, CCR1 is essential for monocyte extravasation and transportation in inflammatory conditions. Its involvement in inflammatory diseases of the central nervous system (CNS), including multiple sclerosis, Alzheimer's disease, and stroke, has been extensively studied along with its ligands. Animal models have demonstrated the beneficial effects resulting from inhibiting CCR1 or its ligands.
A History of Psycho-Neuro-Endocrine Immune Interactions in Rheumatic Diseases
All active scientists stand on the shoulders of giants and many other more anonymous scientists, and this is not different in our field of psycho-neuro-endocrine immunology in rheumatic diseases. Too often, the modern world of publishing forgets about the collective enterprise of scientists. Some journals advise the authors to present only literature from the last decade, and it has become a natural attitude of many scientists to present only the latest publications. In order to work against this general unempirical behavior, neuroimmunomodulation devotes the 30th anniversary issue to the history of medical science in psycho-neuro-endocrine immunology.
Neuroimmunomodulation: The History of Science in Psychoneuroimmunology
From the original studies investigating the effects of adrenal gland secretion to modern high-throughput multidimensional analyses, stress research has been a topic of scientific interest spanning just over a century.
Quick Guide to Evolutionary Medicine in Neuroimmunomodulation: Why "Evolved for the Benefit of the Species" Is Not a Valid Argument
Evolutionary medicine builds on evolutionary biology and explains why natural selection has left us vulnerable to disease. Unfortunately, several misunderstandings exist in the medical literature about the levels and mechanisms of evolution. Reasons for these problems start from the lack of teaching evolutionary biology in medical schools. A common mistake is to assume that "traits must benefit the species, as otherwise the species would have gone extinct in the past" confusing evolutionary history (phylogeny) with evolutionary function (fitness).
The Importance of Neuroendocrine Immunology Pathways in the Course of COVID-19
Medically Unexplained Symptoms Are Linked to Chronic Inflammatory Diseases: Is There a Role for Frontal Cerebral Blood Oxygen Content?
Patients often go to the physician with medically unexplained symptoms (MUS). MUS can be autonomic nervous system-related "unspecific" symptoms, such as palpitations, heart rhythm alterations, temperature dysregulation (hand, feet), anxiety, or depressive manifestations, fatigue, somnolence, nausea, hyperalgesia with varying pains and aches, dizziness, etc. Methods: In this real-world study, we investigated MUS in a cohort of unselected outpatients from general practitioners in Italy. It was our aim to increase the understanding of MUS by using principal component analyses to identify any subcategories of MUS and to check a role of chronic inflammatory diseases. Additionally, we studied cerebral blood oxygen (rCBO2) and associations with MUS and chronic inflammatory disease.
Dimethyl Fumarate Modulates the Immune Environment and Improves Prognosis in the Acute Phase after Ischemic Stroke
Dimethyl fumarate (DMF) has shown potential for protection in various animal models of neurological diseases. However, the impact of DMF on changes in peripheral immune organs and the central nervous system (CNS) immune cell composition after ischemic stroke remains unclear.
Behaviorally Conditioned Immune Responses: "To Learn New Things, Read Old Books and Papers"
More than a century ago, experimental work and clinical observations revealed the functional communication between the brain and the peripheral immune system. This is documented on the one hand by studies first demonstrating the effects of catecholamines on the circulation of leukocytes in experimental animals and humans, and on the other hand via the work of Russian physiologist Ivan Petrovic Pavlov and his coworkers, reporting observations that associative learning can modify peripheral immune functions. This work later fell into oblivion since little was known about the endocrine and immune system's function and even less about the underlying mechanisms of how learning, a central nervous system activity, could affect peripheral immune responses.