NATURE NEUROSCIENCE

Deep RNA sequencing of human dorsal root ganglion neurons reveals somatosensory mechanisms
Cell type mapping reveals tissue niches and interactions in subcortical multiple sclerosis lesions
Lerma-Martin C, Badia-I-Mompel P, Ramirez Flores RO, Sekol P, Schäfer PSL, Riedl CJ, Hofmann A, Thäwel T, Wünnemann F, Ibarra-Arellano MA, Trobisch T, Eisele P, Schapiro D, Haeussler M, Hametner S, Saez-Rodriguez J and Schirmer L
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. Inflammation is gradually compartmentalized and restricted to specific tissue niches such as the lesion rim. However, the precise cell type composition of such niches, their interactions and changes between chronic active and inactive stages are incompletely understood. We used single-nucleus and spatial transcriptomics from subcortical MS and corresponding control tissues to map cell types and associated pathways to lesion and nonlesion areas. We identified niches such as perivascular spaces, the inflamed lesion rim or the lesion core that are associated with the glial scar and a cilia-forming astrocyte subtype. Focusing on the inflamed rim of chronic active lesions, we uncovered cell-cell communication events between myeloid, endothelial and glial cell types. Our results provide insight into the cellular composition, multicellular programs and intercellular communication in tissue niches along the conversion from a homeostatic to a dysfunctional state underlying lesion progression in MS.
Astrocyte transcriptomic changes along the spatiotemporal progression of Alzheimer's disease
Serrano-Pozo A, Li H, Li Z, Muñoz-Castro C, Jaisa-Aad M, Healey MA, Welikovitch LA, Jayakumar R, Bryant AG, Noori A, Connors TR, Hu M, Zhao K, Liao F, Lin G, Pastika T, Tamm J, Abdourahman A, Kwon T, Bennett RE, Woodbury ME, Wachter A, Talanian RV, Biber K, Karran EH, Hyman BT and Das S
Astrocytes are crucial to brain homeostasis, yet their changes along the spatiotemporal progression of Alzheimer's disease (AD) neuropathology remain unexplored. Here we performed single-nucleus RNA sequencing of 628,943 astrocytes from five brain regions representing the stereotypical progression of AD pathology across 32 donors spanning the entire normal aging to severe AD continuum. We mapped out several unique astrocyte subclusters that exhibited varying responses to neuropathology across the AD-vulnerable neural network (spatial axis) or AD pathology stage (temporal axis). The proportion of homeostatic, intermediate and reactive astrocytes changed only along the spatial axis, whereas two other subclusters changed along the temporal axis. One of these, a trophic factor-rich subcluster, declined along pathology stages, whereas the other increased in the late stage but returned to baseline levels in the end stage, suggesting an exhausted response with chronic exposure to neuropathology. Our study underscores the complex dynamics of astrocytic responses in AD.
TYK2 regulates tau levels, phosphorylation and aggregation in a tauopathy mouse model
Kim J, Tadros B, Liang YH, Kim Y, Lasagna-Reeves C, Sonn JY, Chung DC, Hyman B, Holtzman DM and Zoghbi HY
Alzheimer's disease is one of at least 26 diseases characterized by tau-positive accumulation in neurons, glia or both. However, it is still unclear what modifications cause soluble tau to transform into insoluble aggregates. We previously performed genetic screens that identified tyrosine kinase 2 (TYK2) as a candidate regulator of tau levels. Here we verified this finding and found that TYK2 phosphorylates tau at tyrosine 29 (Tyr29) leading to its stabilization and promoting its aggregation in human cells. We discovered that TYK2-mediated Tyr29 phosphorylation interferes with autophagic clearance of tau. We also show that TYK2-mediated phosphorylation of Tyr29 facilitates pathological tau accumulation in P301S tau-transgenic mice. Furthermore, knockdown of Tyk2 reduced total tau and pathogenic tau levels and rescued gliosis in a tauopathy mouse model. Collectively, these data suggest that partial inhibition of TYK2 could thus be a strategy to reduce tau levels and toxicity.
The fly's neural blueprint
Howells H
Predicting modular functions and neural coding of behavior from a synaptic wiring diagram
Vishwanathan A, Sood A, Wu J, Ramirez AD, Yang R, Kemnitz N, Ih D, Turner N, Lee K, Tartavull I, Silversmith WM, Jordan CS, David C, Bland D, Sterling A, Seung HS, Goldman MS, Aksay ERF and
A long-standing goal in neuroscience is to understand how a circuit's form influences its function. Here, we reconstruct and analyze a synaptic wiring diagram of the larval zebrafish brainstem to predict key functional properties and validate them through comparison with physiological data. We identify modules of strongly connected neurons that turn out to be specialized for different behavioral functions, the control of eye and body movements. The eye movement module is further organized into two three-block cycles that support the positive feedback long hypothesized to underlie low-dimensional attractor dynamics in oculomotor control. We construct a neural network model based directly on the reconstructed wiring diagram that makes predictions for the cellular-resolution coding of eye position and neural dynamics. These predictions are verified statistically with calcium imaging-based neural activity recordings. This work demonstrates how connectome-based brain modeling can reveal previously unknown anatomical structure in a neural circuit and provide insights linking network form to function.
A top-down slow breathing circuit that alleviates negative affect in mice
Jhang J, Park S, Liu S, O'Keefe DD and Han S
Although breathing is primarily automatic, its modulation by behavior and emotions suggests cortical inputs to brainstem respiratory networks, which hitherto have received little characterization. Here we identify in mice a top-down breathing pathway from dorsal anterior cingulate cortex (dACC) neurons to pontine reticular nucleus GABAergic inhibitory neurons (PnC), which then project to the ventrolateral medulla (VLM). dACC→PnC activity correlates with slow breathing cycles and volitional orofacial behaviors and is influenced by anxiogenic conditions. Optogenetic stimulation of the dACC→PnC→VLM circuit simultaneously slows breathing and suppresses anxiety-like behaviors, whereas optogenetic inhibition increases both breathing rate and anxiety-like behaviors. These findings suggest that the dACC→PnC→VLM circuit has a crucial role in coordinating slow breathing and reducing negative affect. Our study elucidates a circuit basis for top-down control of breathing, which can influence emotional states.
The role of motor cortex in motor sequence execution depends on demands for flexibility
Mizes KGC, Lindsey J, Escola GS and Ölveczky BP
The role of the motor cortex in executing motor sequences is widely debated, with studies supporting disparate views. Here we probe the degree to which the motor cortex's engagement depends on task demands, specifically whether its role differs for highly practiced, or 'automatic', sequences versus flexible sequences informed by external cues. To test this, we trained rats to generate three-element motor sequences either by overtraining them on a single sequence or by having them follow instructive visual cues. Lesioning motor cortex showed that it is necessary for flexible cue-driven motor sequences but dispensable for single automatic behaviors trained in isolation. However, when an automatic motor sequence was practiced alongside the flexible task, it became motor cortex dependent, suggesting that an automatic motor sequence fails to consolidate subcortically when the same sequence is produced also in a flexible context. A simple neural network model recapitulated these results and offered a circuit-level explanation. Our results critically delineate the role of the motor cortex in motor sequence execution, describing the conditions under which it is engaged and the functions it fulfills, thus reconciling seemingly conflicting views about motor cortex's role in motor sequence generation.
Converging cortical axes
Wagstyl K and Raznahan A
Tau filaments are tethered within brain extracellular vesicles in Alzheimer's disease
Fowler SL, Behr TS, Turkes E, O'Brien DP, Cauhy PM, Rawlinson I, Edmonds M, Foiani MS, Schaler A, Crowley G, Bez S, Ficulle E, Tsefou E, Fischer R, Geary B, Gaur P, Miller C, D'Acunzo P, Levy E, Duff KE and Ryskeldi-Falcon B
The abnormal assembly of tau protein in neurons is a pathological hallmark of multiple neurodegenerative diseases, including Alzheimer's disease (AD). Assembled tau associates with extracellular vesicles (EVs) in the central nervous system of individuals with AD, which is linked to its clearance and prion-like propagation. However, the identities of the assembled tau species and EVs, as well as how they associate, are not known. Here, we combined quantitative mass spectrometry, cryo-electron tomography and single-particle cryo-electron microscopy to study brain EVs from individuals with AD. We found tau filaments composed mainly of truncated tau that were enclosed within EVs enriched in endo-lysosomal proteins. We observed multiple filament interactions, including with molecules that tethered filaments to the EV limiting membrane, suggesting selective packaging. Our findings will guide studies into the molecular mechanisms of EV-mediated secretion of assembled tau and inform the targeting of EV-associated tau as potential therapeutic and biomarker strategies for AD.
The cell-type underpinnings of the human functional cortical connectome
Zhang XH, Anderson KM, Dong HM, Chopra S, Dhamala E, Emani PS, Gerstein MB, Margulies DS and Holmes AJ
The functional properties of the human brain arise, in part, from the vast assortment of cell types that pattern the cerebral cortex. The cortical sheet can be broadly divided into distinct networks, which are embedded into processing streams, or gradients, that extend from unimodal systems through higher-order association territories. Here using microarray data from the Allen Human Brain Atlas and single-nucleus RNA-sequencing data from multiple cortical territories, we demonstrate that cell-type distributions are spatially coupled to the functional organization of cortex, as estimated through functional magnetic resonance imaging. Differentially enriched cells follow the spatial topography of both functional gradients and associated large-scale networks. Distinct cellular fingerprints were evident across networks, and a classifier trained on postmortem cell-type distributions was able to predict the functional network allegiance of cortical tissue samples. These data indicate that the in vivo organization of the cortical sheet is reflected in the spatial variability of its cellular composition.
The BRAIN initiative: a pioneering program on the precipice
Miller CT, Chen X, Donaldson ZR, Marlin BJ, Tsao DY, Williams ZM, Zelikowsky M, Zeng H and Hong W
Interaction of methyl-CpG-binding protein 2 (MeCP2) with distinct enhancers in the mouse cortex
Mishra GP, Sun EX, Chin T, Eckhardt M, Greenberg ME and Stroud H
Mutations in methyl-CpG-binding protein 2 (MeCP2) cause Rett syndrome. MeCP2 is thought to regulate gene transcription by binding to methylated DNA broadly across the genome. Here, using cleavage under target and release under nuclease assays in the adult mouse cortex, we show that MeCP2 strongly binds to specific gene enhancers that we call MeCP2-binding hotspots (MBHs). Unexpectedly, we find that MeCP2 binding to MBHs occurs in a DNA methylation-independent manner at MBHs. Multiple MBH sites surrounding genes mediate the transcriptional repression of genes enriched for neuronal functions. We show that MBHs regulate genes irrespective of genic methylation levels, suggesting that MeCP2 controls transcription via an intragenic methylation-independent mechanism. Hence, disruption of intragenic methylation-independent gene regulation by MeCP2 may in part underlie Rett syndrome.
Spatially resolved gene signatures of white matter lesion progression in multiple sclerosis
Alsema AM, Wijering MHC, Miedema A, Kotah JM, Koster M, Rijnsburger M, van Weering HRJ, de Vries HE, Baron W, Kooistra SM and Eggen BJL
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system characterized by myelin loss and progressive neurodegeneration. To understand MS lesion initiation and progression, we generate spatial gene expression maps of white matter (WM) and grey matter (GM) MS lesions. In different MS lesion types, we detect domains characterized by a distinct gene signature, including an identifiable rim around active WM lesions. Expression changes in astrocyte-specific, oligodendrocyte-specific and microglia-specific gene sets characterize the active lesion rims. Furthermore, we identify three WM lesion progression trajectories, predicting how normal-appearing WM can develop into WM active or mixed active-inactive lesions. Our data shed light on the dynamic progression of MS lesions.
A revised view of the role of CaMKII in learning and memory
Bayer KU and Giese KP
The Ca/calmodulin (CaM)-dependent protein kinase II (CaMKII) plays a fundamental role in learning and possibly also in memory. However, current mechanistic models require fundamental revision. CaMKII autophosphorylation at Thr286 (pThr286) does not provide the molecular basis for long-term memory, as long believed. Instead, pThr286 mediates the signal processing required for induction of several distinct forms of synaptic plasticity, including Hebbian long-term potentiation and depression and non-Hebbian behavioral timescale synaptic plasticity. We discuss (i) the molecular computations by which CaMKII supports these diverse plasticity mechanisms, (ii) alternative CaMKII mechanisms that may contribute to the maintenance phase of LTP and (iii) the relationship of these mechanisms to behavioral learning and memory.
Mapping out multiple sclerosis with spatial transcriptomics
Horan K and Williams AC
Multimodal evaluation of network activity and optogenetic interventions in human hippocampal slices
Andrews JP, Geng J, Voitiuk K, Elliott MAT, Shin D, Robbins A, Spaeth A, Wang A, Li L, Solis D, Keefe MG, Sevetson JL, Rivera de Jesús JA, Donohue KC, Larson HH, Ehrlich D, Auguste KI, Salama S, Sohal V, Sharf T, Haussler D, Cadwell CR, Schaffer DV, Chang EF, Teodorescu M and Nowakowski TJ
Seizures are made up of the coordinated activity of networks of neurons, suggesting that control of neurons in the pathologic circuits of epilepsy could allow for control of the disease. Optogenetics has been effective at stopping seizure-like activity in non-human disease models by increasing inhibitory tone or decreasing excitation, although this effect has not been shown in human brain tissue. Many of the genetic means for achieving channelrhodopsin expression in non-human models are not possible in humans, and vector-mediated methods are susceptible to species-specific tropism that may affect translational potential. Here we demonstrate adeno-associated virus-mediated, optogenetic reductions in network firing rates of human hippocampal slices recorded on high-density microelectrode arrays under several hyperactivity-provoking conditions. This platform can serve to bridge the gap between human and animal studies by exploring genetic interventions on network activity in human brain tissue.
Leveraging deep single-soma RNA sequencing to explore the neural basis of human somatosensation
Yu H, Nagi SS, Usoskin D, Hu Y, Kupari J, Bouchatta O, Yan H, Cranfill SL, Gautam M, Su Y, Lu Y, Wymer J, Glanz M, Albrecht P, Song H, Ming GL, Prouty S, Seykora J, Wu H, Ma M, Marshall A, Rice FL, Li M, Olausson H, Ernfors P and Luo W
The versatility of somatosensation arises from heterogeneous dorsal root ganglion (DRG) neurons. However, soma transcriptomes of individual human (h)DRG neurons-critical information to decipher their functions-are lacking due to technical difficulties. In this study, we isolated somata from individual hDRG neurons and conducted deep RNA sequencing (RNA-seq) to detect, on average, over 9,000 unique genes per neuron, and we identified 16 neuronal types. These results were corroborated and validated by spatial transcriptomics and RNAscope in situ hybridization. Cross-species analyses revealed divergence among potential pain-sensing neurons and the likely existence of human-specific neuronal types. Molecular-profile-informed microneurography recordings revealed temperature-sensing properties across human sensory afferent types. In summary, by employing single-soma deep RNA-seq and spatial transcriptomics, we generated an hDRG neuron atlas, which provides insights into human somatosensory physiology and serves as a foundation for translational work.
Emergence of a brainstem somatosensory tonotopic map for substrate vibration
Lee KS, Loutit AJ, de Thomas Wagner D, Sanders M and Huber D
Perceiving substrate-borne vibrations is a fundamental component of tactile perception. How location (somatotopy) and frequency tuning (tonotopy) of vibrations are integratively processed is poorly understood. Here we addressed this question using in vivo electrophysiology and two-photon calcium imaging along the dorsal column-medial lemniscal pathway. We found that both frequency and location are organized into structured maps in the dorsal column nuclei (DCN). Both maps are intimately related at the fine spatial scale, with parallel map gradients that are consistent across the depth of the DCN and preserved along the ascending pathway. The tonotopic map only partially reflects the distribution of end organs in the skin and deep tissue; instead, the emergence of the fine-scale tonotopy is due to the selective dendritic sampling from axonal afferents, already at the first synaptic relay. We conclude that DCN neural circuits are key to the emergence of these two fine-scale topographical organizations in early somatosensory pathways.
Astrocytes facilitate brain metastases
Inglis GAS
Infraslow noradrenergic locus coeruleus activity fluctuations are gatekeepers of the NREM-REM sleep cycle
Osorio-Forero A, Foustoukos G, Cardis R, Cherrad N, Devenoges C, Fernandez LMJ and Lüthi A
The noradrenergic locus coeruleus (LC) regulates arousal levels during wakefulness, but its role in sleep remains unclear. Here, we show in mice that fluctuating LC neuronal activity partitions non-rapid-eye-movement sleep (NREMS) into two brain-autonomic states that govern the NREMS-REMS cycle over ~50-s periods; high LC activity induces a subcortical-autonomic arousal state that facilitates cortical microarousals, whereas low LC activity is required for NREMS-to-REMS transitions. This functional alternation regulates the duration of the NREMS-REMS cycle by setting permissive windows for REMS entries during undisturbed sleep while limiting these entries to maximally one per ~50-s period during REMS restriction. A stimulus-enriched, stress-promoting wakefulness was associated with longer and shorter levels of high and low LC activity, respectively, during subsequent NREMS, resulting in more microarousal-induced NREMS fragmentation and delayed REMS onset. We conclude that LC activity fluctuations are gatekeepers of the NREMS-REMS cycle and that this role is influenced by adverse wake experiences.