COVID-SegNet: encoder-decoder-based architecture for COVID-19 lesion segmentation in chest X-ray
The coronavirus disease 2019, initially named 2019-nCOV (COVID-19) has been declared a global pandemic by the World Health Organization in March 2020. Because of the growing number of COVID patients, the world's health infrastructure has collapsed, and computer-aided diagnosis has become a necessity. Most of the models proposed for the COVID-19 detection in chest X-rays do image-level analysis. These models do not identify the infected region in the images for an accurate and precise diagnosis. The lesion segmentation will help the medical experts to identify the infected region in the lungs. Therefore, in this paper, a UNet-based encoder-decoder architecture is proposed for the COVID-19 lesion segmentation in chest X-rays. To improve performance, the proposed model employs an attention mechanism and a convolution-based atrous spatial pyramid pooling module. The proposed model obtained 0.8325 and 0.7132 values of the dice similarity coefficient and jaccard index, respectively, and outperformed the state-of-the-art UNet model. An ablation study has been performed to highlight the contribution of the attention mechanism and small dilation rates in the atrous spatial pyramid pooling module.
Ensemble deep honey architecture for COVID-19 prediction using CT scan and chest X-ray images
Recently, the infectious disease COVID-19 remains to have a catastrophic effect on the lives of human beings all over the world. To combat this deadliest disease, it is essential to screen the affected people quickly and least inexpensively. Radiological examination is considered the most feasible step toward attaining this objective; however, chest X-ray (CXR) and computed tomography (CT) are the most easily accessible and inexpensive options. This paper proposes a novel ensemble deep learning-based solution to predict the COVID-19-positive patients using CXR and CT images. The main aim of the proposed model is to provide an effective COVID-19 prediction model with a robust diagnosis and increase the prediction performance. Initially, pre-processing, like image resizing and noise removal, is employed using image scaling and median filtering techniques to enhance the input data for further processing. Various data augmentation styles, such as flipping and rotation, are applied to capable the model to learn the variations during training and attain better results on a small dataset. Finally, a new ensemble deep honey architecture (EDHA) model is introduced to effectively classify the COVID-19-positive and -negative cases. EDHA combines three pre-trained architectures like ShuffleNet, SqueezeNet, and DenseNet-201, to detect the class value. Moreover, a new optimization algorithm, the honey badger algorithm (HBA), is adapted in EDHA to determine the best values for the hyper-parameters of the proposed model. The proposed EDHA is implemented in the Python platform and evaluates the performance in terms of accuracy, sensitivity, specificity, precision, f1-score, AUC, and MCC. The proposed model has utilized the publicly available CXR and CT datasets to test the solution's efficiency. As a result, the simulated outcomes showed that the proposed EDHA had achieved better performance than the existing techniques in terms of Accuracy, Sensitivity, Specificity, Precision, F1-Score, MCC, AUC, and Computation time are 99.1%, 99%, 98.6%, 99.6%, 98.9%, 99.2%, 0.98, and 820 s using the CXR dataset.
A novel study for automatic two-class COVID-19 diagnosis (between COVID-19 and Healthy, Pneumonia) on X-ray images using texture analysis and 2-D/3-D convolutional neural networks
The pandemic caused by the COVID-19 virus affects the world widely and heavily. When examining the CT, X-ray, and ultrasound images, radiologists must first determine whether there are signs of COVID-19 in the images. That is, COVID-19/Healthy detection is made. The second determination is the separation of pneumonia caused by the COVID-19 virus and pneumonia caused by a bacteria or virus other than COVID-19. This distinction is key in determining the treatment and isolation procedure to be applied to the patient. In this study, which aims to diagnose COVID-19 early using X-ray images, automatic two-class classification was carried out in four different titles: COVID-19/Healthy, COVID-19 Pneumonia/Bacterial Pneumonia, COVID-19 Pneumonia/Viral Pneumonia, and COVID-19 Pneumonia/Other Pneumonia. For this study, 3405 COVID-19, 2780 Bacterial Pneumonia, 1493 Viral Pneumonia, and 1989 Healthy images obtained by combining eight different data sets with open access were used. In the study, besides using the original X-ray images alone, classification results were obtained by accessing the images obtained using Local Binary Pattern (LBP) and Local Entropy (LE). The classification procedures were repeated for the images that were combined with the original images, LBP, and LE images in various combinations. 2-D CNN (Two-Dimensional Convolutional Neural Networks) and 3-D CNN (Three-Dimensional Convolutional Neural Networks) architectures were used as classifiers within the scope of the study. Mobilenetv2, Resnet101, and Googlenet architectures were used in the study as a 2-D CNN. A 24-layer 3-D CNN architecture has also been designed and used. Our study is the first to analyze the effect of diversification of input data type on classification results of 2-D/3-D CNN architectures. The results obtained within the scope of the study indicate that diversifying X-ray images with tissue analysis methods in the diagnosis of COVID-19 and including CNN input provides significant improvements in the results. Also, it is understood that the 3-D CNN architecture can be an important alternative to achieve a high classification result.
A deep learning-based framework for detecting COVID-19 patients using chest X-rays
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused outbreaks of new coronavirus disease (COVID-19) around the world. Rapid and accurate detection of COVID-19 coronavirus is an important step in limiting the spread of the COVID-19 epidemic. To solve this problem, radiography techniques (such as chest X-rays and computed tomography (CT)) can play an important role in the early prediction of COVID-19 patients, which will help to treat patients in a timely manner. We aimed to quickly develop a highly efficient lightweight CNN architecture for detecting COVID-19-infected patients. The purpose of this paper is to propose a robust deep learning-based system for reliably detecting COVID-19 from chest X-ray images. First, we evaluate the performance of various pre-trained deep learning models (InceptionV3, Xception, MobileNetV2, NasNet and DenseNet201) recently proposed for medical image classification. Second, a lightweight shallow convolutional neural network (CNN) architecture is proposed for classifying X-ray images of a patient with a low false-negative rate. The data set used in this work contains 2,541 chest X-rays from two different public databases, which have confirmed COVID-19 positive and healthy cases. The performance of the proposed model is compared with the performance of pre-trained deep learning models. The results show that the proposed shallow CNN provides a maximum accuracy of 99.68% and more importantly sensitivity, specificity and AUC of 99.66%, 99.70% and 99.98%. The proposed model has fewer parameters and low complexity compared to other deep learning models. The experimental results of our proposed method show that it is superior to the existing state-of-the-art methods. We believe that this model can help healthcare professionals to treat COVID-19 patients through improved and faster patient screening.
Novel design of cryptosystems for video/audio streaming via dynamic synchronized chaos-based random keys
In this paper, a novel chaos-based cryptosystem is proposed to ensure the communication security of video/audio streaming in the network environment. Firstly, by the proposed synchronization controller for the master and slave chaotic systems, respectively, embedded in the transmitter and receiver, the cryptosystem can generate the synchronized and dynamic chaotic random numbers at the transmitter and receiver simultaneously. Then integrating the chaotic random numbers with SHA3-256 (Secure hash algorithm 3), the design of synchronized dynamic key generators (SDKGs) is completed. Continuously, we can apply the SDKGs to encrypt/decrypt streaming audio/video data. In our design, we introduce the AES CFB (Advanced encryption standard cipher feedback) encryption algorithm with SDKGs to encrypt the video/audio streaming. Then the cipher-text is transmitted to the receiver via the network public channel and it can be fully decrypted with the dynamic random keys synchronously generated at the receiver. A duplex audio/video cryptosystem is realized to illustrate the performance and feasibility of this proposed research. Finally, many tests and comparisons are performed to stress the quality of random sequences generated by proposed SDKGs.
Deep learning in multimedia healthcare applications: a review
The increase in chronic diseases has affected the countries' health system and economy. With the recent COVID-19 virus, humanity has experienced a great challenge, which has led to make efforts to detect it and prevent its spread. Hence, it is necessary to develop new solutions that are based on technology and low cost, to satisfy the citizens' needs. Deep learning techniques is a technological solution that has been used in healthcare lately. Nowadays, with the increase in chips processing capabilities, increase size of data, and the progress in deep learning research, healthcare applications have been proposed to provide citizens' health needs. In addition, a big amount of data is generated every day. Development in Internet of Things, gadgets, and phones has allowed the access to multimedia data. Data such as images, video, audio and text are used as input of applications based on deep learning methods to support healthcare system to diagnose, predict, or treat patients. This review pretends to give an overview of proposed healthcare solutions based on deep learning techniques using multimedia data. We show the use of deep learning in healthcare, explain the different types of multimedia data, show some relevant deep learning multimedia applications in healthcare, and highlight some challenges in this research area.
A survey on the interpretability of deep learning in medical diagnosis
Deep learning has demonstrated remarkable performance in the medical domain, with accuracy that rivals or even exceeds that of human experts. However, it has a significant problem that these models are "black-box" structures, which means they are opaque, non-intuitive, and difficult for people to understand. This creates a barrier to the application of deep learning models in clinical practice due to lack of interpretability, trust, and transparency. To overcome this problem, several studies on interpretability have been proposed. Therefore, in this paper, we comprehensively review the interpretability of deep learning in medical diagnosis based on the current literature, including some common interpretability methods used in the medical domain, various applications with interpretability for disease diagnosis, prevalent evaluation metrics, and several disease datasets. In addition, the challenges of interpretability and future research directions are also discussed here. To the best of our knowledge, this is the first time that various applications of interpretability methods for disease diagnosis have been summarized.
BDCNet: multi-classification convolutional neural network model for classification of COVID-19, pneumonia, and lung cancer from chest radiographs
Globally, coronavirus disease (COVID-19) has badly affected the medical system and economy. Sometimes, the deadly COVID-19 has the same symptoms as other chest diseases such as pneumonia and lungs cancer and can mislead the doctors in diagnosing coronavirus. Frontline doctors and researchers are working assiduously in finding the rapid and automatic process for the detection of COVID-19 at the initial stage, to save human lives. However, the clinical diagnosis of COVID-19 is highly subjective and variable. The objective of this study is to implement a multi-classification algorithm based on deep learning (DL) model for identifying the COVID-19, pneumonia, and lung cancer diseases from chest radiographs. In the present study, we have proposed a model with the combination of Vgg-19 and convolutional neural networks (CNN) named BDCNet and applied it on different publically available benchmark databases to diagnose the COVID-19 and other chest tract diseases. To the best of our knowledge, this is the first study to diagnose the three chest diseases in a single deep learning model. We also computed and compared the classification accuracy of our proposed model with four well-known pre-trained models such as ResNet-50, Vgg-16, Vgg-19, and inception v3. Our proposed model achieved an AUC of 0.9833 (with an accuracy of 99.10%, a recall of 98.31%, a precision of 99.9%, and an f1-score of 99.09%) in classifying the different chest diseases. Moreover, CNN-based pre-trained models VGG-16, VGG-19, ResNet-50, and Inception-v3 achieved an accuracy of classifying multi-diseases are 97.35%, 97.14%, 97.15%, and 95.10%, respectively. The results revealed that our proposed model produced a remarkable performance as compared to its competitor approaches, thus providing significant assistance to diagnostic radiographers and health experts.
DATaR: Depth Augmented Target Redetection using Kernelized Correlation Filter
Unlike deep learning which requires large training datasets, correlation filter-based trackers like Kernelized Correlation Filter (KCF) use implicit properties of tracked images (circulant structure) for training in real time. Despite their popularity in tracking applications, there exists significant drawbacks of the tracker in cases like occlusions and out-of-view scenarios. This paper attempts to address some of these drawbacks with a novel RGB-D Kernel Correlation tracker in target re-detection. Our target re-detection framework not only re-detects the target in challenging scenarios but also intelligently adapts to avoid any boundary issues. Our results are experimentally evaluated using (a) standard dataset and (b) real time using the Microsoft Kinect V2 sensor. We believe this work will set the basis for improvement in the effectiveness of kernel-based correlation filter trackers and will further the development of a more robust tracker.
Learning effective embedding for automated COVID-19 prediction from chest X-ray images
The pandemic that the SARS-CoV-2 originated in 2019 is continuing to cause serious havoc on the global population's health, economy, and livelihood. A critical way to suppress and restrain this pandemic is the early detection of COVID-19, which will help to control the virus. Chest X-rays are one of the more straightforward ways to detect the COVID-19 virus compared to the standard methods like CT scans and RT-PCR diagnosis, which are very complex, expensive, and take much time. Our research on various papers shows that the currently researchers are actively working for an efficient Deep Learning model to produce an unbiased detection of COVID-19 through chest X-ray images. In this work, we propose a novel convolution neural network model based on supervised classification that simultaneously computes identification and verification loss. We adopt a transfer learning approach using pretrained models trained on imagenet dataset such as Alex Net and VGG16 as back-bone models and use data augmentation techniques to solve class imbalance and boost the classifier's performance. Finally, our proposed classifier architecture model ensures unbiased and high accuracy results, outperforming existing deep learning models for COVID-19 detection from chest X-ray images producing State of the Art performance. It shows strong and robust performance and proves to be easily deployable and scalable, therefore increasing the efficiency of analyzing chest X-ray images with high accuracy in detection of Coronavirus.
Performance analysis of U-Net with hybrid loss for foreground detection
With the latest developments in deep neural networks, the convolutional neural network (CNN) has made considerable progress in the area of foreground detection. However, the top-rank background subtraction algorithms for foreground detection still have many shortcomings. It is challenging to extract the true foreground against complex background. To tackle the bottleneck, we propose a hybrid loss-assisted U-Net framework for foreground detection. A proposed deep learning model integrates transfer learning and hybrid loss for better feature representation and faster model convergence. The core idea is to incorporate reference background image and change detection mask in the learning network. Furthermore, we empirically investigate the potential of hybrid loss over single loss function. The advantages of two significant loss functions are combined to tackle the class imbalance problem in foreground detection. The proposed technique demonstrates its effectiveness on standard datasets and performs better than the top-rank methods in challenging environment. Moreover, experiments on unseen videos also confirm the efficacy of proposed method.
Role of deep learning models and analytics in industrial multimedia environment
A survey on face presentation attack detection mechanisms: hitherto and future perspectives
The advances in human face recognition (FR) systems have recorded sublime success for automatic and secured authentication in diverse domains. Although the traditional methods have been overshadowed by face recognition counterpart during this progress, computer vision gains rapid traction, and the modern accomplishments address problems with real-world complexity. However, security threats in FR-based systems are a growing concern that offers a new-fangled track to the research community. In particular, recent past has witnessed ample instances of spoofing attacks where imposter breaches security of the system with an artifact of human face to circumvent the sensor module. Therefore, presentation attack detection (PAD) capabilities are instilled in the system for discriminating genuine and fake traits and anticipation of their impact on the overall behavior of the FR-based systems. To scrutinize exhaustively the current state-of-the-art efforts, provide insights, and identify potential research directions on face PAD mechanisms, this systematic study presents a review of face anti-spoofing techniques that use computational approaches. The study includes advancements in face PAD mechanisms ranging from traditional hardware-based solutions to up-to-date handcrafted features or deep learning-based approaches. We also present an analytical overview of face artifacts, performance protocols, and benchmark face anti-spoofing datasets. In addition, we perform analysis of the twelve recent state-of-the-art (SOTA) face PAD techniques on a common platform using identical dataset (i.e., REPLAY-ATTACK) and performance protocols (i.e., HTER and ACA). Our overall analysis investigates that despite prevalent face PAD mechanisms demonstrate potential performance, there exist some crucial issues that requisite a futuristic attention. Our analysis put forward a number of open issues such as; limited generalization to unknown attacks, inadequacy of face datasets for DL-models, training models with new fakes, efficient DL-enabled face PAD with smaller datasets, and limited discrimination of handcrafted features. Furthermore, the COVID-19 pandemic is an additional challenge to the existing face-based recognition systems, and hence to the PAD methods. Our motive is to present a complete reference of studies in this field and orient researchers to promising directions.
An overview of deep learning techniques for COVID-19 detection: methods, challenges, and future works
The World Health Organization (WHO) declared a pandemic in response to the coronavirus COVID-19 in 2020, which resulted in numerous deaths worldwide. Although the disease appears to have lost its impact, millions of people have been affected by this virus, and new infections still occur. Identifying COVID-19 requires a reverse transcription-polymerase chain reaction test (RT-PCR) or analysis of medical data. Due to the high cost and time required to scan and analyze medical data, researchers are focusing on using automated computer-aided methods. This review examines the applications of deep learning (DL) and machine learning (ML) in detecting COVID-19 using medical data such as CT scans, X-rays, cough sounds, MRIs, ultrasound, and clinical markers. First, the data preprocessing, the features used, and the current COVID-19 detection methods are divided into two subsections, and the studies are discussed. Second, the reported publicly available datasets, their characteristics, and the potential comparison materials mentioned in the literature are presented. Third, a comprehensive comparison is made by contrasting the similar and different aspects of the studies. Finally, the results, gaps, and limitations are summarized to stimulate the improvement of COVID-19 detection methods, and the study concludes by listing some future research directions for COVID-19 classification.
An olfactory display for virtual reality glasses
Olfaction has not been explored in virtual reality environments to the same extent as the visual and auditory senses. Much less research has been done with olfactory devices, and very few of them can be easily integrated into virtual reality applications. The inclusion of odor into virtual reality simulations using a chemical device involves challenges such as possible diffusion into undesired areas, slow dissipation, the definition of various parameters (e.g., concentration, frequency, and duration), and an appropriate software solution for controlling the diffusion of the odor. This paper aims to present a non-intrusive, mobile, low cost and wearable olfactory display, and a software service that allows the developer to easily create applications that include olfactory stimuli integrated with virtual reality headset glasses. We also present a case study conducted with 32 people to evaluate their satisfaction when using the olfactory display. Our findings indicate that our solution works as expected, producing odor properly and being easy to integrate to applications.
A new design of multimedia big data retrieval enabled by deep feature learning and Adaptive Semantic Similarity Function
Nowadays, multimedia big data have grown exponentially in diverse applications like social networks, transportation, health, and e-commerce, etc. Accessing preferred data in large-scale datasets needs efficient and sophisticated retrieval approaches. Multimedia big data consists of the most significant features with different types of data. Even though the multimedia supports various data formats with corresponding storage frameworks, similar semantic information is expressed by the multimedia. The overlap of semantic features is most efficient for theory and research related to semantic memory. Correspondingly, in recent years, deep multimodal hashing gets more attention owing to the efficient performance of huge-scale multimedia retrieval applications. On the other hand, the deep multimodal hashing has limited efforts for exploring the complex multilevel semantic structure. The main intention of this proposal is to develop enhanced deep multimedia big data retrieval with the Adaptive Semantic Similarity Function (A-SSF). The proposed model of this research covers several phases "(a) Data collection, (b) deep feature extraction, (c) semantic feature selection and (d) adaptive similarity function for retrieval. The two main processes of multimedia big data retrieval are training and testing. Once after collecting the dataset involved with video, text, images, and audio, the training phase starts. Here, the deep semantic feature extraction is performed by the Convolutional Neural Network (CNN), which is again subjected to the semantic feature selection process by the new hybrid algorithm termed Spider Monkey-Deer Hunting Optimization Algorithm (SM-DHOA). The final optimal semantic features are stored in the feature library. During testing, selected semantic features are added to the map-reduce framework in the Hadoop environment for handling the big data, thus ensuring the proper big data distribution. Here, the main contribution termed A-SSF is introduced to compute the correlation between the multimedia semantics of the testing data and training data, thus retrieving the data with minimum similarity. Extensive experiments on benchmark multimodal datasets demonstrate that the proposed method can outperform the state-of-the-art performance for all types of data.
Fake COVID-19 videos detector based on frames and audio watermarking
With the innovation and development of advanced video editing technology and the widespread use of video information and services in our society, it is increasingly necessary to maintain the reliability of video information. As a result, sensitive video contents in various fields such as surveillance, medical, and others should be secured against attempts to alter them because malicious modifications could impact decisions based on these videos. In this paper, we present a fake video detector based on combining audio and frames watermarking. Furthermore experimental results demonstrate good robustness and integrity verification results for COVID-19 video news.
A holistic overview of deep learning approach in medical imaging
Medical images are a rich source of invaluable necessary information used by clinicians. Recent technologies have introduced many advancements for exploiting the most of this information and use it to generate better analysis. Deep learning (DL) techniques have been empowered in medical images analysis using computer-assisted imaging contexts and presenting a lot of solutions and improvements while analyzing these images by radiologists and other specialists. In this paper, we present a survey of DL techniques used for variety of tasks along with the different medical image's modalities to provide critical review of the recent developments in this direction. We have organized our paper to provide significant contribution of deep leaning traits and learn its concepts, which is in turn helpful for non-expert in medical society. Then, we present several applications of deep learning (e.g., segmentation, classification, detection, etc.) which are commonly used for clinical purposes for different anatomical site, and we also present the main key terms for DL attributes like basic architecture, data augmentation, transfer learning, and feature selection methods. Medical images as inputs to deep learning architectures will be the mainstream in the coming years, and novel DL techniques are predicted to be the core of medical images analysis. We conclude our paper by addressing some research challenges and the suggested solutions for them found in literature, and also future promises and directions for further developments.
A light-weight convolutional Neural Network Architecture for classification of COVID-19 chest X-Ray images
The COVID-19 pandemic has opened numerous challenges for scientists to use massive data to develop an automatic diagnostic tool for COVID-19. Since the outbreak in January 2020, COVID-19 has caused a substantial destructive impact on society and human life. Numerous studies have been conducted in search of a suitable solution to test COVID-19. Artificial intelligence (AI) based research is not behind in this race, and many AI-based models have been proposed. This paper proposes a lightweight convolutional neural network (CNN) model to classify COVID and Non_COVID patients by analyzing the hidden features in the X-Ray images. The model has been evaluated with different standard metrics to prove the reliability of the model. The model obtained 98.78%, 93.22%, and 92.7% accuracy in the training, validation, and testing phases. In addition, the model achieved 0.964 scores in the Area Under Curve (AUC) metric. We compared the model with four state-of-art pre-trained models (VGG16, InceptionV3, DenseNet121, and EfficientNetB6). The evaluation results demonstrate that the proposed CNN model is a candidate for an automatic diagnostic tool for the classification of COVID-19 patients using chest X-ray images. This research proposes a technique to classify COVID-19 patients and does not claim any medical diagnosis accuracy.
Combating multimodal fake news on social media: methods, datasets, and future perspective
The growth in the use of social media platforms such as Facebook and Twitter over the past decade has significantly facilitated and improved the way people communicate with each other. However, the information that is available and shared online is not always credible. These platforms provide a fertile ground for the rapid propagation of breaking news along with other misleading information. The enormous amounts of fake news present online have the potential to trigger serious problems at an individual level and in society at large. Detecting whether the given information is fake or not is a challenging problem and the traits of social media makes the task even more complicated as it eases the generation and spread of content to the masses leading to an enormous volume of content to analyze. The multimedia nature of fake news on online platforms has not been explored fully. This survey presents a comprehensive overview of the state-of-the-art techniques for combating fake news on online media with the prime focus on deep learning (DL) techniques keeping multimodality under consideration. Apart from this, various DL frameworks, pre-trained models, and transfer learning approaches are also underlined. As till date, there are only limited multimodal datasets that are available for this task, the paper highlights various data collection strategies that can be used along with a comparative analysis of available multimodal fake news datasets. The paper also highlights and discusses various open areas and challenges in this direction.