Molecular Cytogenetics

Copy number variation heterogeneity reveals biological inconsistency in hierarchical cancer classifications
Yang Z, Carrio-Cordo P and Baudis M
Cancers are heterogeneous diseases with unifying features of abnormal and consuming cell growth, where the deregulation of normal cellular functions is initiated by the accumulation of genomic mutations in cells of - potentially - any organ. At diagnosis malignancies typically present with patterns of somatic genome variants on diverse levels of heterogeneity. Among the different types of genomic alterations, copy number variants (CNV) represent a distinct, near-ubiquitous class of structural variants. Cancer classifications are foundational for patient care and oncology research. Terminologies such as the National Cancer Institute Thesaurus provide large sets of hierarchical cancer classification vocabularies and promote data interoperability and ontology-driven computational analysis. To find out how categorical classifications correspond to genomic observations, we conducted a meta-analysis of inter-sample genomic heterogeneity for classification hierarchies on CNV profiles from 97,142 individual samples across 512 cancer entities, and evaluated recurring CNV signatures across diagnostic subsets. Our results highlight specific biological mechanisms across cancer entities with the potential for improvement of patient stratification and future enhancement of cancer classification systems and provide some indications for cooperative genomic events across distinct clinical entities.
False-positive XXY results by interphase FISH in cytogenetically normal XX individuals: two cases highlighting the necessity of additional laboratory follow-up
Ding Q, Bronson AL, Byerly KA, Essendrup AA, Mitchell EB, Runke CK, Rowsey RA and Hoppman NL
Interphase fluorescence in situ hybridization (FISH) is commonly used for rapid aneuploidy detection in clinical settings. While FISH-based aneuploidy detection provides rapid results desirable for patient management, it usually only utilizes one probe per chromosome, which may lead to rare false-positive findings.
Precision oncology platforms: practical strategies for genomic database utilization in cancer treatment
Gazola AA, Lautert-Dutra W, Archangelo LF, Reis RBD and Squire JA
In recent years, the expansion of molecularly targeted cancer therapies has significantly advanced precision oncology. Parallel developments in next-generation sequencing (NGS) technologies have also improved precision oncology applications, making genomic analysis of tumors more affordable and accessible. Targeted NGS panels now enable the rapid identification of diverse actionable mutations, requiring clinicians to efficiently assess the predictive value of cancer biomarkers for specific treatments. The urgency for timely and accurate decision-making in oncology emphasizes the importance of reliable precision oncology software. Online clinical decision-making tools and associated cancer databases have been designed by consolidating genomic data into standardized, accessible formats. These new platforms are highly integrated and crucial for identifying actionable somatic genomic biomarkers essential for tumor survival, determining corresponding drug targets, and selecting appropriate treatments based on the mutational profile of each patient's tumor. To help oncologists and translational cancer researchers unfamiliar with these tools, we review the utility, accuracy, and comprehensiveness of several commonly used precision medicine software options currently available. Our analysis categorized selected genomic databases based on their primary content, utility, and how well they provide practical guidance for interpreting somatic biomarker data. We identified several comprehensive, mostly open-access platforms that are easy to use for genetic biomarker searches, each with unique features and limitations. Among the precision oncology tools we evaluated, we found MyCancerGenome and OncoKB to be the first choice, offering comprehensive, accurate up-to-date information on the clinical significance of somatic mutations. To illustrate the application of these precision oncology tools in clinical settings, we evaluated three case studies to see how use of the platforms could have influenced treatment planning. Most of the precision oncology software evaluated could be easily streamlined into clinical workflows to provide updated information on approved drugs and clinical trials related the actionable mutations detected. Some platforms were very intuitive and easy to use, while others, often developed in smaller academic settings, were more difficult to navigate and may not be updated consistently. Future enhancements, incorporating artificial intelligence algorithms, are likely to improve integration of the platforms with diverse big data sources, enabling more accurate predictions of potential therapeutic responses.
Correction: X chromosome rearrangement associated with premature ovarian insufficiency as diagnosed by molecular cytogenetic methods: a case report and review of the literature
Peng Z, Yang R, Liu Q, Chen B and Long P
Detection of regions of homozygosity in an unusual case of frontonasal dysplasia
Paz-Y-Miño C, Vargas-Vera RM, Placencia-Ibadango MV, Vargas-Silva KS, García-Hernández JL, Balarezo-Díaz T and Leone PE
We present the case of a 7-year-old Ecuadorian mestizo girl with multiple orofacial malformations. The patient is the product of a first-degree relationship (father-daughter). A cytogenetic study revealed a normal karyotype. The genetic mapping array study identified 0.73 Gb of alterations, 727,087,295 bp involved in regions of homozygosity (ROH) in all chromosomes (25.2% of the genome) and 764,028 bp in gains in chromosomes 9 and 14. Genes from the TGFB, BMP, FGF, SHH and WNT families, among others, were identified in the ROH. They are related to craniofacial development and their protein products showed a strong association in the interactome analysis.
Insights into avian molecular cytogenetics-with reptilian comparisons
Griffin DK, Kretschmer R, Srikulnath K, Singchat W, O'Connor RE and Romanov MN
In last 100 years or so, much information has been accumulated on avian karyology, genetics, physiology, biochemistry and evolution. The chicken genome project generated genomic resources used in comparative studies, elucidating fundamental evolutionary processes, much of it funded by the economic importance of domestic fowl (which are also excellent model species in many areas). Studying karyotypes and whole genome sequences revealed population processes, evolutionary biology, and genome function, uncovering the role of repetitive sequences, transposable elements and gene family expansion. Knowledge of the function of many genes and non-expressed or identified regulatory components is however still lacking. Birds (Aves) are diverse, have striking adaptations for flight, migration and survival and inhabit all continents most islands. They also have a unique karyotype with ~ 10 macrochromosomes and ~ 30 microchromosomes that are smaller than other reptiles. Classified into Palaeognathae and Neognathae they are evolutionarily close, and a subset of reptiles. Here we overview avian molecular cytogenetics with reptilian comparisons, shedding light on their karyotypes and genome structure features. We consider avian evolution, then avian (followed by reptilian) karyotypes and genomic features. We consider synteny disruptions, centromere repositioning, and repetitive elements before turning to comparative avian and reptilian genomics. In this context, we review comparative cytogenetics and genome mapping in birds as well as Z- and W-chromosomes and sex determination. Finally, we give examples of pivotal research areas in avian and reptilian cytogenomics, particularly physical mapping and map integration of sex chromosomal genes, comparative genomics of chicken, turkey and zebra finch, California condor cytogenomics as well as some peculiar cytogenetic and evolutionary examples. We conclude that comparative molecular studies and improving resources continually contribute to new approaches in population biology, developmental biology, physiology, disease ecology, systematics, evolution and phylogenetic systematics orientation. This also produces genetic mapping information for chromosomes active in rearrangements during the course of evolution. Further insights into mutation, selection and adaptation of vertebrate genomes will benefit from these studies including physical and online resources for the further elaboration of comparative genomics approaches for many fundamental biological questions.
Prenatal diagnosis of fetuses with 15q11.2 BP1-BP2 microdeletion in the Chinese population: a seven-year single-center retrospective study
Zhuang J, Zhang N, Fu W, Jiang Y, Chen Y and Chen C
The 15q11.2 BP1-BP2 microdeletion syndrome is associated with developmental delays, language impairments, neurobehavioral disorders, and psychiatric complications. The aim of the present study was to provide prenatal and postnatal clinical data for 16 additional fetuses diagnosed with the 15q11.2 BP1-BP2 microdeletion syndrome in the Chinese population.
Prenatal diagnosis in fetal right aortic arch using chromosomal microarray analysis and whole exome sequencing: a Chinese single-center retrospective study
Zhang L, Huang R, Zhou H, Lin X, Guo F, Jing X, Zhang Y, Li F, Li F, Yu Q, Wang D, Chen G, Fu F, Pan M, Han J, Li D and Li R
Right aortic arch (RAA) is a common congenital aortic arch abnormality. Fetuses with RAA frequently have good outcomes after birth. However, chromosomal abnormalities and genetic syndromes suggest poor prognosis for these patients. So far the underlying genetic etiology is still not identified in most RAA patients based on traditional genetic techniques and a problem is still debated whether fetuses with isolated RAA should be referred for CMA. Our study aims to investigate the genetic etiology of fetuses with right aortic arch (RAA) by chromosomal microarray analysis (CMA) and whole exome sequencing (WES) and evaluate the efficacy of CMA in fetal isolated RAA.
Higher prevalence of poor prognostic markers at a younger age in adult patients with myelodysplastic syndrome - evaluation of a large cohort in India
Srivastava VM, Nair SC, Joy M, Manipadam MT, Kulkarni UP, Devasia AJ, Fouzia NA, Korula A, Lakshmi KM, Jeyaseelan L, Abraham A and Srivastava A
The karyotype is a major determinant of prognosis in myelodysplastic syndrome (MDS). Details of the cytogenetic profile of MDS in South Asia are limited because cytogenetic services are not widely available.
Complex genomic rearrangements of the Y chromosome in a premature infant
Balow SA, Coyan AG, Smith N, Russell BE, Monteil D, Hopkin RJ and Smolarek TA
Chromoanagenesis is an umbrella term used to describe catastrophic "all at once" cellular events leading to the chaotic reconstruction of chromosomes. It is characterized by numerous rearrangements involving a small number of chromosomes/loci, copy number gains in combination with deletions, reconstruction of chromosomal fragments with improper order/orientation, and preserved heterozygosity in copy number neutral regions. Chromoanagesis is frequently described in association with cancer; however, it has also been described in the germline. The clinical features associated with constitutional chromoanagenesis are typically due to copy number changes and/or disruption of genes or regulatory regions.
Cytogenomic description of a Mexican cohort with differences in sex development
Olivera-Bernal GC, De Ita-Ley M, Ricárdez-Marcial EF, Garduño-Zarazúa LM, González-Cuevas ÁR, Sepúlveda-Robles OA, Huicochea-Montiel JC, Cárdenas-Conejo A, Santana-Díaz L and Rosas-Vargas H
Differences in Sex Development (DSD) is a heterogeneous group of congenital alterations that affect inner and/or outer primary sex characters. Although these conditions do not represent a mortality risk, they can have a severe psycho-emotional impact if not appropriately managed. The genetic changes that can give rise to DSD are diverse, from chromosomal alterations to single base variants involved in the sexual development network. Epidemiological studies about DSD indicate a global frequency of 1:4500-5500, which can increase to 1:200-300, including isolated anatomical defects. To our knowledge, this study is the first to describe epidemiological and genetic features of DSD in a cohort of Mexican patients of a third-level care hospital.
Chromosomal instability in a patient with ring chromosome 14 syndrome: a case report
Meza-Espinoza JP, González-García JR, Nieto-Marín N, Patrón-Baro LI, González-Arreola RM, Arámbula-Meraz E, Benítez-Pascual J, De la Herrán-Arita AK, Norzagaray-Valenzuela CD, Valdez-Flores MA, Carrillo-Cázares TA and Picos-Cárdenas VJ
Ring chromosome 14 syndrome is a rare disorder primarily marked by early-onset epilepsy, microcephaly, distinctive craniofacial features, hypotonia, intellectual disability, and delay in both development and language acquisition.
Mesomelia-synostoses syndrome: contiguous deletion syndrome, SULF1 haploinsufficiency or enhancer adoption?
Bendas Feres Lima I, Fátima Marques de Moraes L, Roberto da Fonseca C, Clinton Llerena Junior J, Mehrjouy M, Tommerup N and Ferreira Bastos E
Mesomelia-Synostoses Syndrome (MSS)(OMIM 600,383) is a rare autosomal dominant disorder characterized by mesomelic limb shortening, acral synostoses and multiple congenital malformations which is described as a contiguous deletion syndrome involving the two genes SULF1 and SLCO5A1. The study of apparently balanced chromosomal rearrangements (BCRs) is a cytogenetic strategy used to identify candidate genes associated with Mendelian diseases or abnormal phenotypes. With the improved development of genomic technologies, new methods refine this search, allowing better delineation of breakpoints as well as more accurate genotype-phenotype correlation.
Clinical features associated with maternal uniparental disomy for chromosome 6
Li JW, Qian YJ, Mao SJ, Chao YQ, Qin YF, Hu CX, Li ZL and Zou CC
Maternal uniparental disomy for chromosome 6 (upd(Cajaiba MM, Witchel S, Madan-Khetarpal S, Hoover J, Hoffner L, Macpherson T, et al. Prenatal diagnosis of trisomy 6 rescue resulting in paternal UPD6 with novel placental findings. Am J Med Genet Part A. 2011;155 A(8):1996-2002.)mat) has been previously reported to cause intrauterine growth restriction (IUGR), but the specific clinical phenotype has not been defined. Based on clinical data from two new cases and patients from the literature, specific phenotypes and mechanisms will be discussed further.
Loss of heterozygosity impacts MHC expression on the immune microenvironment in CDK12-mutated prostate cancer
Lautert-Dutra W, M Melo C, Chaves LP, Crozier C, P Saggioro F, B Dos Reis R, Bayani J, Bonatto SL and Squire JA
In prostate cancer (PCa), well-established biomarkers such as MSI status, TMB high, and PDL1 expression serve as reliable indicators for favorable responses to immunotherapy. Recent studies have suggested a potential association between CDK12 mutations and immunotherapy response; however, the precise mechanisms through which CDK12 mutation may influence immune response remain unclear. A plausible explanation for immune evasion in this subset of CDK12-mutated PCa may be reduced MHC expression.
Efficiency of copy number variation sequencing combined with karyotyping in fetuses with congenital heart disease and the following outcomes
Wang X, Sha J, Han Y, Pang M, Liu M, Liu M, Zhang B and Zhai J
Both copy number variant-sequencing (CNV-seq) and karyotype analysis have been used as powerful tools in the genetic aetiology of fetuses with congenital heart diseases (CHD). However, CNV-seq brings clinicians more confusions to interpret the detection results related to CHD with or without extracardiac abnormalities. Hence, we conducted this study to investigate the clinical value of CNV-seq in fetuses with CHD.
Analysis of copy number variants detected by sequencing in spontaneous abortion
Liu A, Zhou L, Huang Y and Peng D
The incidence of spontaneous abortion (SA), which affects approximately 15-20% of pregnancies, is the most common complication of early pregnancy. Pathogenic copy number variations (CNVs) are recognized as potential genetic causes of SA. However, CNVs of variants of uncertain significance (VOUS) have been identified in products of conceptions (POCs), and their correlation with SA remains uncertain.
Cytogenomic characterization of pediatric T-cell acute lymphoblastic leukemia reveals TCR rearrangements as predictive factors for exceptional prognosis
Lizcova L, Prihodova E, Pavlistova L, Svobodova K, Mejstrikova E, Hrusak O, Luknarova P, Janotova I, Sramkova L, Stary J and Zemanova Z
T-cell acute lymphoblastic leukemia (T-ALL) represents a rare and clinically and genetically heterogeneous disease that constitutes 10-15% of newly diagnosed pediatric ALL cases. Despite improved outcomes of these children, the survival rate after relapse is extremely poor. Moreover, the survivors must also endure the acute and long-term effects of intensive therapy. Although recent studies have identified a number of recurrent genomic aberrations in pediatric T-ALL, none of the changes is known to have prognostic significance. The aim of our study was to analyze the cytogenomic changes and their various combinations in bone marrow cells of children with T-ALL and to correlate our findings with the clinical features of the subjects and their treatment responses.
Mosaic derivative chromosomes at chorionic villi (CV) sampling are expression of genomic instability and precursors of cryptic disease-causing rearrangements: report of further four cases
Vitetta G, Desiderio L, Baccolini I, Uliana V, Lanzoni G, Ghi T, Pilu G, Ambrosini E, Caggiati P, Barili V, Trotta AC, Liuti MR, Malpezzi E, Pittalis MC and Percesepe A
Mosaic chromosomal anomalies arising in the product of conception and the final fetal chromosomal arrangement are expression of complex biological mechanisms. The rescue of unbalanced chromosome with selection of the most viable cell line/s in the embryo and the unfavourable imbalances in placental tissues was documented in our previous paper and in the literature. We report four additional cases with mosaic derivative chromosomes in different feto-placental tissues, further showing the instability of an intermediate gross imbalance as a frequent mechanism of de novo cryptic deletions and duplications. In conclusion we underline how the extensive remodeling of unbalanced chromosomes in placental tissues represents the 'backstage' of de novo structural rearrangements, as the early phases of a long selection process that the genome undergo during embryogenesis.
Clinical outcomes of screen-positive genome-wide cfDNA cases for trisomy 20: results from the global expanded NIPT Consortium
Soster E, Mossfield T, Menezes M, Agenbag G, Dubois ML, Gekas J, Hardy T, Loggenberg K and
Trisomy 20 has been shown to be one of the most frequent rare autosomal trisomies in patients that undergo genome-wide noninvasive prenatal testing. Here, we describe the clinical outcomes of cases that screened positive for trisomy 20 following prenatal genome-wide cell-free (cf.) DNA screening. These cases are part of a larger cohort of previously published cases. Members of the Global Expanded NIPT Consortium were invited to submit details on their cases with a single rare autosomal aneuploidy following genome-wide cfDNA screening for retrospective analysis. Clinical details including patient demographics, test indications, diagnostic testing, and obstetric pregnancy outcomes were collected. Genome-wide cfDNA screening was conducted following site-specific laboratory procedures. Cases which screened positive for trisomy 20 (n = 10) were reviewed. Clinical outcome information was available for 90% (9/10) of our screen-positive trisomy 20 cases; the case without diagnostic testing ended in a fetal demise. Of the nine cases with outcome information, one was found to have a mosaic partial duplication (duplication at 20p13), rather than a full trisomy 20. Only one case in the study cohort had placental testing; therefore, confined placental mosaicism could not be ruled out in most cases. Adverse pregnancy outcomes were seen in half of the cases, which could suggest the presence of underlying confined placental mosaicism or mosaic/full fetal trisomy 20. Based on our limited series, the likelihood of true fetal aneuploidy is low but pregnancies may be at increased risk for adverse obstetric outcomes and may benefit from additional surveillance.
Noninvasive prenatal testing for the detection of fetal chromosome 17 microduplication: clinical implications and findings
Shi Y, Zheng FX, Wang J, Zhou Q, Chen YP and Zhang B
 Noninvasive prenatal testing (NIPT) is widely used to screen for fetal aneuploidies. However, there are few reports of using NIPT for screening chromosomal microduplications and microdeletions. This study aimed to investigate the application efficiency of NIPT for detecting chromosomal microduplications.