Expanding Our Horizon to Inform Cutting Edge Mechanistic Studies: Cancer Research Resources
TIPE inhibits ferroptosis in colorectal cancer cells by regulating MGST1/ALOX5
TIPE is a protein highly expressed in various cancers that promotes ferroptosis in colorectal cancer (CRC) cells. Ferroptosis is a non-apoptotic cell death caused by lipid peroxidation, and MGST1 is a critical enzyme that resists lipid peroxidation. This study explored how TIPE regulates MGST1 expression to inhibit ferroptosis and promote CRC proliferation. TIPE was highly expressed in CRC tissues and positively correlated with the proliferation of human CRC cells. We measured levels of reactive oxygen species (ROS) and lipid-ROS in CRC cells with differential expression of TIPE and detected ferroptosis using transmission electron microscopy. Bioinformatics analysis revealed a positive correlation of expression patterns between TIPE and MGST1 in CRC. TIPE regulated the expression of MGST1 by activating the phosphorylation of ERK1/2. Co-immunoprecipitation revealed binding between MGST1 and ALOX5. This binding inhibited the phosphorylation of ALOX5, inhibiting ferroptosis and promoting the proliferation of CRC cells. A tumor formation experiment in nude mice supported our findings that TIPE regulates the proliferation of CRC by regulating ferroptosis. Implications: TIPE inhibits CRC ferroptosis via an MGST1-ALOX5 interaction to promote CRC proliferation. These findings suggest future CRC treatment strategies.
Retraction: Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma
Retraction: CDX1 Expression Induced by CagA-Expressing Helicobacter pylori Promotes Gastric Tumorigenesis
Editor's Note: Therapeutic Targeting of Nuclear γ-Tubulin in RB1-Negative Tumors
Retraction: miRNA-302b Suppresses Human Hepatocellular Carcinoma by Targeting AKT2
Retraction: KRAS Activation in Gastric Adenocarcinoma Stimulates Epithelial-to-Mesenchymal Transition to Cancer Stem-Like Cells and Promotes Metastasis
Oncogenic KRAS Mutations Confer a Unique Mechanotransduction Response to Peristalsis in Colorectal Cancer Cells
Colorectal cancer (CRC) tumors start as polyps on the inner lining of the colorectum, where they are exposed to the mechanics of peristalsis. Our previous work leveraged a custom-built peristalsis bioreactor to demonstrate that colonic peristalsis led to cancer stem cell enrichment in CRC cells. However, this malignant mechanotransductive response was confined to select CRC lines that harbored an oncogenic mutation in the KRAS gene. Here, we explored the involvement of activating KRAS mutations on peristalsis-associated mechanotransduction in CRC. Peristalsis enriched cancer stem cell marker LGR5 in KRAS mutant lines, in a Wnt-ligand-independent manner. Conversely, LGR5 enrichment in wild type KRAS lines exposed to peristalsis were minimal. LGR5 enrichment downstream of peristalsis translated to increased tumorigenicity in vivo. Differences in mechanotransduction was apparent via unbiased gene set enrichment analysis, where many unique pathways were enriched in wild type vs. mutant lines. Peristalsis also triggered β-catenin nuclear localization independent of Wnt-ligands, particularly in KRAS mutant lines. The involvement of KRAS was validated via gain and loss of function strategies. Peristalsis induced β-catenin activation and LGR5 enrichment depended on the activation of the MEK/ERK cascade. Taken together, our results demonstrated that oncogenic KRAS mutations conferred a unique peristalsis-associated mechanotransduction response to colorectal cancer cells, resulting in cancer stem cell enrichment and increased tumorigenicity. These mechanosensory connections can be leveraged in improving the sensitivity of emerging therapies that target oncogenic KRAS. Implications: Oncogenic KRAS empowers colorectal cancer cells to harness the mechanics of colonic peristalsis for malignant gain, independent of other cooperating signals. .
ASAP1 and ARF1 regulate myogenic differentiation in rhabdomyosarcoma by modulating TAZ activity
Despite aggressive, multimodal therapies, the prognosis of patients with refractory or recurrent rhabdomyosarcoma (RMS) has not improved in four decades. Because RMS resembles skeletal muscle precursor cells, differentiation-inducing therapy has been proposed for patients with advanced disease. In RAS-mutant PAX fusion-negative RMS (FN-FMS) preclinical models, MEK1/2 inhibition (MEKi) induces differentiation, slows tumor growth, and extends survival. However, the response is short-lived. A better understanding of the molecular mechanisms regulating FN-RMS differentiation could improve differentiation therapy. Here, we identified a role in FN-RMS differentiation for ASAP1, an ARF GTPase-activating protein (ARF GAP) with both pro-invasive and tumor suppressor functions. We found that ASAP1 knockdown inhibited differentiation in FN-RMS cells. Interestingly, knockdown of the GTPases ARF1 or ARF5, targets of ASAP1 GAP activity, also blocked differentiation of FN-RMS. We discovered that loss of ARF pathway components blocked myogenic transcription factor expression. Therefore, we examined the effects on transcriptional regulators. MEKi led to the phosphorylation and inactivation of WWTR1 (TAZ), a homolog of the pro-proliferative transcriptional co-activator YAP1 regulated by the Hippo pathway. However, loss of ASAP1 or ARF1 blocked this inactivation, which inhibits MEKi-induced differentiation. Finally, MEKi-induced differentiation was rescued by dual knockdown of ASAP1 and WWTR1. This study shows that ASAP1 and ARF1 are necessary for myogenic differentiation, providing a deeper understanding of differentiation in FN-RMS and illuminating an opportunity to advance differentiation therapy. Implications: ASAP1 and ARF1 regulate MEKi-induced differentiation of FN-RMS cells by modulating WWTR1 (TAZ) activity, supporting YAP1/TAZ inhibition as a FN-RMS differentiation therapy strategy.
Tumor-derived EBV-miR-BART2-5p promotes nasopharyngeal carcinoma metastasis by inducing pre-metastatic endothelial cell pyroptosis
Extravasation is a key step in tumor metastasis. Epstein‒Barr virus (EBV) plays a crucial role in nasopharyngeal carcinoma (NPC) metastasis. However, the functions and molecular mechanisms of EBV during tumor cell extravasation remains unclear. Here, we showed that the expression of pyroptosis-associated proteins is greater in the endothelial cells of metastatic NPC tissues than in those of nontumor tissues Exosomes derived from NPC cells promoted endothelial cell pyroptosis, vascular permeability, and tumor cell extravasation. Moreover, we found that BART2-5p is abundant in serum exosomes from NPC patients with metastasis and NPC cells, and that it regulates endothelial cell pyroptosis in pre-metastatic organs via MRE11A. Exosomes containing a BART2-5p inhibitor and AAV-MRE11A attenuated endothelial cell pyroptosis and tumor metastasis. Moreover, in the endothelial cells of metastatic tissues from NPC patients, the BART2-5p level was positively associated with pyroptosis-related protein expression. Collectively, our findings suggest that exosomal BART2-5p is involved in pre-metastatic niche formation, identifying secreted BART2-5p as a potential therapeutic target for NPC metastasis. Implications: The finding that secreted BART2-5p is involved in pre-metastatic niche formation may aid the development of potential therapeutic target for NPC metastasis.
Loss of PI5P4Kα slows the progression of a Pten mutant basal cell model of prostate cancer
While early prostate cancer (PCa) depends on the androgen receptor (AR) signaling pathway, which is predominant in luminal cells, there is much to be understood about the contribution of epithelial basal cells in cancer progression. Herein, we observe cell-type specific differences in the importance of the metabolic enzyme phosphatidylinositol 5-phosphate 4-kinase alpha (PI5P4Kα β ; gene name PIP4K2A) in the prostate epithelium. We report the development of a basal-cell-specific genetically engineered mouse model (GEMM) targeting Pip4k2a alone or in combination with the tumor suppressor phosphatase and tensin homolog (Pten). PI5P4Kα is enriched in basal cells, and no major histopathological changes were detectable following gene deletion. Notably, the combined loss of Pip4k2a slowed the development of Pten mutant mouse prostatic intraepithelial neoplasia (mPIN). Through the inclusion of a lineage tracing reporter, we utilize single-cell RNA sequencing to evaluate changes resulting from in vivo downregulation of Pip4k2a and characterize cell populations influenced in the established Probasin-Cre and Cytokeratin 5 (CK5)-Cre driven GEMMs. Transcriptomic pathway analysis points towards the disruption of lipid metabolism as a mechanism for reduced tumor progression. This was functionally supported by shifts of carnitine lipids in LNCaP PCa cells treated with siPIP4K2A. Overall, these data nominate PI5P4Kα as a target for PTEN mutant PCa. Implications: PI5P4Kα is enriched in prostate basal cells and its targeted loss slows the progression of a model of advanced PCa.
The distinct roles of NEIL1 and XPA in limiting aflatoxin B₁-induced mutagenesis in mice
Dietary exposure to aflatoxin B₁ (AFB₁) is a risk factor for the development of hepatocellular carcinomas (HCCs). Following metabolic activation, AFB₁ reacts with guanines to form covalent DNA adducts, which induce high-frequency G > T transversions. The molecular signature associated with these mutational events aligns with the single base substitution signature 24 (SBS24) in the Catalog of Somatic Mutations in Cancer (COSMIC) database. Deficiencies in either base excision repair (BER) due to the absence of Nei-like DNA glycosylase 1 (NEIL1) or nucleotide excision repair (NER) due to the absence of xeroderma complementation group A protein (XPA) contribute to HCCs in murine models. In the current study, ultra-low error duplex sequencing was used to characterize mutational profiles in liver DNAs of NEIL1-deficient, XPA-deficient, and DNA repair-proficient mice following neonatal injection of 1 mg/kg AFB₁. Analyses of AFB₁-induced mutations showed high cosine similarity to SBS24, regardless of repair proficiency status. The absence of NEIL1 resulted in an approximately 30% increase in the frequency of mutations, with distribution suggesting preferential NEIL1-dependent repair of AFB₁ lesions in open chromatin regions. A trend of increased mutagenesis was also observed in the absence of XPA. Consistent with the role of XPA in transcription-coupled repair, mutational profiles in XPA-deficient mice showed disruption of the transcriptional bias in mutations associated with SBS24. Implications: Our findings define the roles of DNA repair pathways in AFB₁-induced mutagenesis and carcinogenesis in murine models, with these findings having implications in human health for those with BER and NER deficiencies.
N-linked fucosylated glycans are biomarkers for prostate cancer with a neuroendocrine and metastatic phenotype
Prostate cancer (PCa) is a heterogeneous disease with a spectrum of pathology and outcomes ranging from indolent to lethal. Although there have been recent advancements in prognostic tissue biomarkers, limitations still exist. We leveraged Matrix Assisted Laser Desorption Ionization (MALDI) imaging of formalin-fixed, paraffin embedded (FFPE) prostate cancer specimens to determine if N-linked glycans expressed in the extracellular matrix of lethal neuroendocrine prostate cancer were also expressed in conventional prostate adenocarcinomas that were associated with poor outcomes. We found that N-glycan fucosylation was abundant in neuroendocrine prostate cancer as well as adenocarcinomas at time of prostatectomy that eventually developed recurrent metastatic disease. Analysis of patient derived xenografts revealed that this fucosylation signature was enriched differently across metastatic disease organ sites, with the highest abundance in liver metastases. These data suggest that N-linked fucosylated glycans could be an early tissue biomarker for poor PCa outcomes. Implications: These studies identify that hyper-fucosylated N-linked glycans are enriched in neuroendocrine prostate cancer and conventional prostate adenocarcinomas that progress to metastatic disease, thus advancing biomarker discovery and providing insights into mechanisms underlying metastatic disease.
PRMT5 maintains tumor stem cells to promote pediatric high-grade glioma tumorigenesis
Pediatric high-grade gliomas (PHGG) are aggressive, undifferentiated CNS tumors with poor outcomes, for which no standard-of-care drug therapy currently exists. Through a knockdown screen for epigenetic regulators, we identified PRMT5 as essential for PHGG cell growth. We hypothesized that, similar to its effect in normal cells, PRMT5 promotes self-renewal of stem-like PHGG tumor initiating cells (TICs) essential for tumor growth. We conducted in vitro analyses, including limiting dilution studies of self-renewal, to determine the phenotypic effects of PRMT5 KD. We performed ChIP-Seq to identify PRMT5-mediated epigenetic changes and performed gene set enrichment analysis to identify pathways that PRMT5 regulates. Using an orthotopic xenograft model of PHGG, we tracked survival and histological characteristics resulting from PRMT5 KD or administration of a PRMT5 inhibitor ± radiation therapy (RT). In vitro, PRMT5 KD slowed cell cycle progression, tumor growth and self-renewal, and altered chromatin occupancy at genes associated with differentiation, tumor formation and growth. In vivo, PRMT5 KD increased survival and reduced tumor aggressiveness; however, pharmacological inhibition of PRMT5 with or without RT did not improve survival. PRMT5 KD epigenetically reduced TIC self-renewal, leading to increased survival in preclinical models. Pharmacological inhibition of PRMT5 enzymatic activity may have failed in vivo due to insufficient reduction of PRMT5 activity by chemical inhibition, or this failure may suggest that non-enzymatic activities of PRMT5 are more relevant. Implications: PRMT5 maintains and promotes the growth of stemlike cells that initiate and drive tumorigenesis in pediatric high grade glioma.
Intra- and Extrahepatic Cholangiocarcinomas Display Differing Sensitivities to NK Cell Lysis and Modulate NK Cell Function Through Shared and Distinct Pathways
Cholangiocarcinoma (CCA) is a rare cancer that arises from the bile duct and is broadly classified by the location of the tumor as either intrahepatic (iCCA) or extrahepatic (eCCA). Immunotherapy has revolutionized cancer treatment, yet its utility in CCA has been limited as the tumor microenvironment (TME) in CCA is poorly understood compared to other common cancers. Utilizing previously published transcriptome data, our re-analysis has revealed that CCA has one of the highest relative levels of natural killer (NK) cells, a potent cytotoxic immune cell, compared to other cancers. However, despite iCCA and eCCA having comparable relative levels of NK infiltration, NK cell infiltration only correlated with survival in eCCA patients. Our subsequent investigation revealed that while iCCA and eCCA profoundly altered NK activity, eCCA had a significantly reduced impact on NK functionality. Whereas iCCA was resistant to long-term NK co-culture, eCCA was markedly more sensitive. Moreover, while both iCCA and eCCA dysregulated key NK activating receptors, eCCA co-culture did not impact NKp30 nor NKp44 expression. Furthermore, tumor transcriptome analysis of NKHigh CCA samples revealed modulation of multiple immune and non-immune cell types within the TME. Implications: These studies are the first to investigate how iCCA and eCCA impact NK cell functionality through shared and distinct mechanisms and how elevated NK cell infiltration could shape the CCA TME in a subtype-dependent manner.
Gram-negative microflora dysbiosis facilitates tumor progression and immune evasion by activating CCL3/CCL5-CCR1-MAPK-PD-L1 pathway in esophageal squamous cell carcinoma
Gram-negative micro-flora dysbiosis occurs in multiple digestive tumors and is found to be the dominant micro-flora in esophageal squamous cell carcinoma (ESCC) micro-environment. The continuous stimulation of G- bacterium metabolites may cause tumorigenesis and reshape the micro-immune environment in ESCC. However, the mechanism of G- bacilli causing immune evasion in ESCC remains underexplored. We identified CC Chemokine receptor 1 (CCR1) as a tumor-indicating gene in ESCC. Interestingly, expression levels of CCR1 and PD-L1 were mutually up regulated after G- bacilli metabolites lipopolysaccharide (LPS) stimulation. Firstly, we found CCR1 high expression level to be associated with poor overall survival in ESCC. Importantly, we found that high level expression of CCR1 up-regulated PD-L1 expression by activating MAPK phosphorylation in ESCC and induced tumor malignant behavior. Finally, we found that T cells exhaustion and cytotoxicity suppression were associated with CCR1 expression in ESCC, which were decreased after CCR1 inhibiting. Our work identifies CCR1 as a potential immune check point regulator of PD-L1 and may cause T cell exhaustion and cytotoxicity suppression in ESCC micro-environment and highlights the potential value of CCR1 as therapeutic target of immunotherapy. Implications: The esophageal microbial environment and its metabolites significantly affect the outcome of immunotherapy for ESCC.
Genome Instability Precedes Viral Integration in Human Papilloma Virus Transformed Tonsillar Keratinocytes
Approximately 70% of oropharyngeal squamous carcinomas (OPSCC) are associated with human papillomavirus (HPV). While patients with HPV-positive tumors generally have better outcomes than those with HPV-negative tumors, a subset of HPV-positive patients do have poor outcomes. Our previous work suggested that tumors with integrated virus exhibit significantly greater genome wide genomic instability than those with only episomal viral genomes and patients with HPV+ OPSCC with episomal viral genomes had better outcomes. To explore the causal relation between viral integration and genomic instability, we have examined the time course of viral integration and genetic instability in tonsillar keratinocytes transformed with HPV16. HPV-infected human tonsil keratinocyte cell lines were continuously passaged and every fifth passage some cells were retained for genomic analysis. Whole genome sequencing and optical genomic mapping confirmed that virus integrated in five of six cell lines while remaining episomal in the sixth. In all lines genome instability occurred during early passages, but essentially ceased following viral integration but continued to occur later passages in the episomal line. To test tumorigenicity of the cell lines, cells were injected subcutaneously into the flanks of nude mice. A cell line with the integrated virus induced tumors following injection in the nude mouse while that with the episomal virus did not. Implications: Genomic instability in HPV OPSCC tumors is not the result of viral integration but likely promotes integration. Moreover, transformants with episomal virus appear to be less tumorigenic than those with integrated virus.
c-Myc, AKT, Hsc70, and the T-Box Transcription Factor TBX3 Form an Important Oncogenic Signaling Axis in Breast Cancer
Breast cancer is the second leading cause of death in women globally, and it remains a health burden due to poor therapy response, cancer cell drug resistance, and the debilitating side effects associated with most therapies. One approach to addressing the need to improve breast cancer therapies has been to elucidate the mechanism(s) underpinning this disease to identify key drivers that can be targeted in molecular therapies. The T-box transcription factor, TBX3, is upregulated in breast cancer, in which it contributes to important oncogenic processes, and it has been validated as a potential therapeutic target. Here, we investigated the molecular mechanisms that upregulate TBX3 in breast cancer, and we show that it involves transcriptional activation by c-Myc, post-translational modification by AKT1 and AKT3, and interaction with the molecular chaperone Hsc70. Together, the results from this study provide evidence that c-Myc, AKT, Hsc70, and TBX3 form part of an important oncogenic pathway in breast cancer and thus reveal versatile ways of interfering with the oncogenic activity of TBX3 for the treatment of this neoplasm. Implications: Targeting the c-Myc/AKT/TBX3/Hsc70 signaling axis may be an effective treatment strategy for TBX3-driven breast cancer.
Defining splicing factor requirements for androgen receptor variant synthesis in advanced prostate cancer
Resistance to androgen receptor (AR)-targeted therapies represent a major challenge in prostate cancer (PC). A key mechanism of treatment resistance in patients who progress to castrate-resistant PC (CRPC) is the generation of alternatively spliced androgen receptor variants (AR-Vs). Unlike full-length AR (FL-AR) isoforms, AR-Vs are constitutively active and refractory to current receptor-targeting agents hence drive tumour progression. Identifying regulators of AR-V synthesis may therefore provide new therapeutic opportunities in combination with conventional AR-targeting agents. Our understanding of AR transcript splicing, and the factors that control the synthesis of AR-Vs, remains limited. While candidate-based approaches have identified a small number of AR-V splicing regulators, an unbiased analysis of splicing factors important for AR-V generation is required to fill an important knowledge gap and furnish the field with novel and tractable targets for PC treatment. To that end, we conducted a bespoke CRISPR screen to profile splicing factor requirements for AR-V synthesis. MFAP1 and CWC22 were shown to be required for the generation of AR-V mRNA transcripts and their depletion resulted in reduced AR-V protein abundance and cell proliferation in several CRPC models. Global transcriptomic analysis of MFAP1-depleted cells revealed both AR-dependent and -independent transcriptional impact, including genes associated with DDR. As such, MFAP1 downregulation sensitised PC cells to ionising radiation suggesting therapeutically targeting AR-V splicing could provide novel cellular vulnerabilities which can be exploited in CRPC. Implications: We have utilised a CRISPR screening approach to identify key regulators of pathogenic AR splicing in prostate cancer.
B-type plexins regulate mitosis via RanGTPase
Aberrant mitosis can result in aneuploidy and cancer. The small GTPase, Ran, is a key regulator of mitosis. B-type Plexins regulate Ran activity by acting as RanGTPase activating proteins (GAPs) and have been implicated in cancer progression. However, whether B-type plexins have a role in mitosis has not so far been investigated. We show here that PlexinB1 functions in the control of mitosis. Depletion of PlexinB1 affects mitotic spindle assembly, significantly delaying anaphase. This leads to mitotic catastrophe in some cells, and prolonged application of the spindle assembly checkpoint. PlexinB1 depletion also promoted acentrosomal microtubule nucleation and defects in spindle pole refocussing and increased the number of cells with multipolar or aberrant mitotic spindles. An increase in lagging chromosomes or chromosomal bridges at anaphase was also found upon PlexinB1 depletion. PlexinB1 localises to the mitotic spindle in dividing cells. The mitotic defects observed upon PlexinB1 depletion were rescued by an RCC1 inhibitor, indicating that PlexinB1 signals, via Ran, to affect mitosis. These errors in mitosis generated multinucleate cells, and nuclei of altered morphology and abnormal karyotype. Furthermore, Semaphorin4D-treatment increased the percentage of cells with micronuclei, precursors of chromothripsis. Implications: Defects in B-type plexins may contribute to the well-established role of plexins in cancer progression by inducing chromosomal instability.
EHMT1/2 inhibition promotes regression of therapy-resistant ovarian cancer tumors in a CD8 T cell-dependent manner
Poly ADP-ribose polymerase inhibitors (PARPi) are first-line maintenance therapy for ovarian cancer and an alternative therapy for several other cancer types. However, PARPi-resistance is rising and there is currently an unmet need to combat PARPi-resistant tumors. Here, we created an immunocompetent, PARPi-resistant mouse model to test the efficacy of combinatory PARPi and euchromatic histone methyltransferase 1/2 inhibitor (EHMTi) in the treatment of PARPi-resistant ovarian cancer. We discovered that inhibition of EHMT1/2 resensitizes cells to PARPi. Markedly, we show that single EHMTi and combinatory EHMTi/PARPi significantly reduced PARPi-resistant tumor burden and that this reduction is partially dependent on CD8 T cells. Altogether, our results show a low-toxicity drug that effectively treats PARPi-resistant ovarian cancer in an immune-dependent manner, supporting its entry into clinical development and potential incorporation of immunotherapy. Implications: Targeting the epigenome of therapy-resistant ovarian cancer induces an anti-tumor response mediated in part through an anti-tumor immune response.