LOGIC JOURNAL OF THE IGPL

Using deep neural networks along with dimensionality reduction techniques to assist the diagnosis of neurodegenerative disorders
Segovia F, Górriz JM, Ramírez J, Martinez-Murcia FJ and García-Pérez M
The analysis of neuroimaging data is frequently used to assist the diagnosis of neurodegenerative disorders such as Alzheimer's disease (AD) or Parkinson's disease (PD) and has become a routine procedure in the clinical practice. During the past decade, the pattern recognition community has proposed a number of machine learning-based systems that automatically analyse neuroimaging data in order to improve the diagnosis. However, the high dimensionality of the data is still a challenge and there is room for improvement. The development of novel classification frameworks as TensorFlow, recently released as open source by Google Inc., represents an opportunity to continue evolving these systems. In this work, we demonstrate several computer-aided diagnosis (CAD) systems based on Deep Neural Networks that improve the diagnosis for AD and PD and outperform those based on classical classifiers. In order to address the small sample size problem we evaluate two dimensionality reduction algorithms based on Principal Component Analysis and Non-Negative Matrix Factorization (NNMF), respectively. The performance of developed CAD systems is assessed using 4 datasets with neuroimaging data of different modalities.
Reasoning with Vectors: A Continuous Model for Fast Robust Inference
Widdows D and Cohen T
This paper describes the use of continuous vector space models for reasoning with a formal knowledge base. The practical significance of these models is that they support fast, approximate but robust inference and hypothesis generation, which is complementary to the slow, exact, but sometimes brittle behavior of more traditional deduction engines such as theorem provers. The paper explains the way logical connectives can be used in semantic vector models, and summarizes the development of Predication-based Semantic Indexing, which involves the use of Vector Symbolic Architectures to represent the concepts and relationships from a knowledge base of subject-predicate-object triples. Experiments show that the use of continuous models for formal reasoning is not only possible, but already demonstrably effective for some recognized informatics tasks, and showing promise in other traditional problem areas. Examples described in this paper include: predicting new uses for existing drugs in biomedical informatics; removing unwanted meanings from search results in information retrieval and concept navigation; type-inference from attributes; comparing words based on their orthography; and representing tabular data, including modelling numerical values. The algorithms and techniques described in this paper are all publicly released and freely available in the Semantic Vectors open-source software package.
A symbolic/subsymbolic interface protocol for cognitive modeling
Simen P and Polk T
Researchers studying complex cognition have grown increasingly interested in mapping symbolic cognitive architectures onto subsymbolic brain models. Such a mapping seems essential for understanding cognition under all but the most extreme viewpoints (namely, that cognition consists exclusively of digitally implemented rules; or instead, involves no rules whatsoever). Making this mapping reduces to specifying an interface between symbolic and subsymbolic descriptions of brain activity. To that end, we propose parameterization techniques for building cognitive models as programmable, structured, recurrent neural networks. Feedback strength in these models determines whether their components implement classically subsymbolic neural network functions (e.g., pattern recognition), or instead, logical rules and digital memory. These techniques support the implementation of limited production systems. Though inherently sequential and symbolic, these neural production systems can exploit principles of parallel, analog processing from decision-making models in psychology and neuroscience to explain the effects of brain damage on problem solving behavior.