Depth profiles of biological aerated contactors: Characterizing microbial activity treating reduced contaminants
The biological treatment process consisting of an aerated contactor and filter is effective for groundwaters containing elevated ammonia and other reduced contaminants, including iron, manganese, arsenic, and methane. Depth profiles characterizing microbial activity across aerated contactors are lacking. A 1-year pilot study comparing gravel- and ceramic-packed contactors was conducted, and media depth profile samples were collected at the conclusion of the study. Media and water samples also were collected from pilot-scale aerated contactors at 4 other water systems. Water quality, media surface metals concentrations, and a suite of biofilm parameters were analyzed. Media surface metals concentrations were greatest at the influent end. ATP concentrations, extracellular polymeric substances, and extracellular enzyme activities tended to be similar across depth. Bacteria and functional genes involved in contaminant oxidation co-occurred and tended to decrease across depth, but were not correlated to the media metals concentration. Microbial community composition changed with depth, and the diversity either decreased or remained similar. The microbial activity profiles through aerated contactors differed from what is typically reported for groundwater biofilters, suggesting that the different reactor flow and dissolved oxygen profiles impacted the microbial community.
Polanyi adsorption potential theory for estimating PFAS treatment with granular activated carbon
Per- and polyfluoroalkyl substances (PFAS) are a group of chemicals that have gained interest because some PFAS have been shown to have negative health effects and prolonged environmental and biological persistence. Chemicals classified as PFAS have a wide range of chemical moieties that impart widely variable properties, leading to a range of water treatment process efficacies. The Polanyi Potential Adsorption Theory was used to estimate Freundlich isotherm parameters to predict the efficacy of granular activated carbon (GAC) treatment for 428 PFAS chemicals for which the vast majority had no previously published treatment data. This method accounts for the physical/chemical characteristics of the individual PFAS beyond molecular weight or chain length that have previously been employed. From a statistical analysis of available data and model results, many of the 428 PFAS were predicted to be effectively treatable by GAC. Although not directly applicable to full-scale design, the approach demonstrates a systematic method for predicting the effectiveness of GAC where isotherm or column data are not available. This then can be used to prioritize future research.
Adsorption kinetics of 20 glucocorticoids at environmentally relevant concentrations in wastewater by powdered activated carbons and development of surrogate models
Glucocorticoids (GCs) are widely used in the treatment of the coronavirus disease of 2019 (COVID-19), and the toxicity of GCs to aquatic organisms has aroused widespread concern. Powdered activated carbon (PAC) has proven effective in removing various trace organic pollutants. In this study, the adsorption behaviors of 20 typical GCs onto PACs were investigated at environmentally relevant concentrations (ng/L) in real wastewater, using four commercially available PACs (HDB, WPH, 20BF, PWA). The results showed that PAC adsorption was feasible for GC removal at ng/L concentrations. After adsorption for 60 min, the GC removal efficiencies obtained by HDB, WPH, 20BF, and PWA were 90-98 %, 89-97 %, 84-96 %, and 71-90 %, respectively. The adsorption processes of 20 GCs on PACs were well fitted by the pseudo-second-order kinetics model (with >0.98). Among the four PACs, HDB achieved the highest rates because of the electrostatic attraction between HDB (positively charged) and the complex of GCs and natural organic matter (GC-NOM, negatively charged). Among the 20 GCs, compounds with substitutions of halogen atoms or five-membered rings at C-17 achieved higher adsorption rates because of the enhanced formation of hydrogen bonds and a resulting increase in electron density. In addition, surrogate models with total fluorescence (TF) and ultraviolet absorbance at 254 nm (UV) were developed to monitor the attenuation trend of GCs during adsorption processes. Compared with the UV model, the TF model showed better sensitivity to GC monitoring, which could greatly simplify the water quality monitoring process and facilitate online monitoring of GCs in water.
Biocatalyst developed with recovered iron-rich minerals enhances the biotransformation of SARS-CoV-2 antiviral drugs in anaerobic bioreactors
The biotransformation of the SARS-CoV-2 antiviral drugs, ribavirin and tenofovir, was studied in methanogenic bioreactors. The role of iron-rich minerals, recovered from a metallurgic effluent, on the biotransformation process was also assessed. Enrichment of anaerobic sludge with recovered minerals promoted superior removal efficiency for both antivirals (97.4 % and 94.7 % for ribavirin and tenofovir, respectively) as compared to the control bioreactor lacking minerals, which achieved 58.5 % and 37.9 % removal for the same drugs, respectively. Further analysis conducted by liquid chromatography coupled to mass spectroscopy revealed several metabolites derived from the biotransformation of both antivirals. Interestingly, tracer analysis with CH revealed that anaerobic methane oxidation coupled to Fe(III) reduction occurred in the enriched bioreactor, which was reflected in a lower content of methane in the biogas produced from this system, as compared to the control bioreactor. This treatment proposal is suitable within the circular economy concept, in which recovered metals from an industrial wastewater are applied in bioreactors to create a biocatalyst for promoting the biotransformation of emerging pollutants. This strategy may be appropriate for the anaerobic treatment of wastewaters originated from hospitals, as well as from the pharmaceutical and chemical sectors.
A sustainable approach for the removal methods and analytical determination methods of antiviral drugs from water/wastewater: A review
In the last years, antiviral drugs especially used for the treatment of COVID-19 have been considered emerging contaminants because of their continuous occurrence and persistence in water/wastewater even at low concentrations. Furthermore, as compared to antiviral drugs, their metabolites and transformation products of these pharmaceuticals are more persistent in the environment. They have been found in environmental matrices all over the world, demonstrating that conventional treatment technologies are unsuccessful for removing them from water/wastewater. Several approaches for degrading/removing antiviral drugs have been studied to avoid this contamination. In this study, the present level of knowledge on the input sources, occurrence, determination methods and, especially, the degradation and removal methods of antiviral drugs are discussed in water/wastewater. Different removal methods, such as conventional treatment methods (i.e. activated sludge), advanced oxidation processes (AOPs), adsorption, membrane processes, and combined processes, were evaluated. In addition, the antiviral drugs and these metabolites, as well as the transformation products created as a result of treatment, were examined. Future perspectives for removing antiviral drugs, their metabolites, and transformation products were also considered.
A critical review on the existing wastewater treatment methods in the COVID-19 era: What is the potential of advanced oxidation processes in combatting viral especially SARS-CoV-2?
The COVID-19 epidemic has put the risk of virus contamination in water bodies on the horizon of health authorities. Hence, finding effective ways to remove the virus, especially SARS-CoV-2, from wastewater treatment plants (WWTPs) has emerged as a hot issue in the last few years. Herein, this study first deals with the fate of SARS-CoV-2 genetic material in WWTPs, then critically reviews and compares different wastewater treatment methods for combatting COVID-19 as well as to increase the water quality. This critical review sheds light the efficiency of advanced oxidation processes (AOPs) to inactivate virus, specially SARS-CoV-2 RNA. Although several physicochemical treatment processes (e.g. activated sludge) are commonly used to eliminate pathogens, AOPs are the most versatile and effective virus inactivation methods. For instance, TiO is the most known and widely studied photo-catalyst innocuously utilized to degrade pollutants as well as to photo-induce bacterial and virus disinfection due to its high chemical resistance and efficient photo-activity. When ozone is dissolved in water and wastewater, it generates a wide spectrum of the reactive oxygen species (ROS), which are responsible to degrade materials in virus membranes resulting in destroying the cell wall. Furthermore, electrochemical advanced oxidation processes act through direct oxidation when pathogens react at the anode surface or by indirect oxidation through oxidizing species produced in the bulk solution. Consequently, they represent a feasible choice for the inactivation of a wide range of pathogens. Nonetheless, there are some challenges with AOPs which should be addressed for application at industrial-scale.
Validating the use of lyophilized natural organic matter as background material in GAC rapid small-scale column tests
Utilities often test the effectiveness of different granular activated carbons (GACs) to determine which is most advantageous for their system. For surface water systems, in particular, the seasonal and annual variability of natural organic matter (NOM) in the source water makes it difficult to benchmark the effectiveness of GACs over multiple contract periods. This study produced stable, lyophilized NOM from the filtered water (FW), i.e., the influent to GAC contactors, which was then reconstituted (Recon) and tested against the FW itself in parallel rapid small-scale column tests (RSSCTs). The results demonstrated nearly identical NOM breakthrough profiles. RSSCTs conducted with both FW and Recon were shown to simulate the full-scale contactor performance well, while similar RSSCTs with regenerated GAC yielded a slightly earlier breakthrough, possibly due to the changes in GAC characteristics during regeneration and grinding. RSSCTs evaluating the removal of microcystin-LR (MC-LR) in the presence of background NOM contained in FW and Recon showed slightly different results, possibly due to the difference in chloride concentrations of these two waters. This work validates that reconstituted lyophilized NOM can be used as a source water surrogate for GAC evaluations when the constituent of interest is NOM, and potentially for other constituents depending upon the influence of additional inorganic constituents that were not evaluated as part of this study.
Effectiveness of solar water disinfection in the era of COVID-19 (SARS-CoV-2) pandemic for contaminated water/wastewater treatment considering UV effect and temperature
Long is the way and hard, that out of COVID-19 leads up to light. The virus is highly contagious and spread rapidly and the number of infections increases exponentially. The colossal number of infections and presence of the novel coronavirus RNA in human wastes (e.g. Excreta/urine) even after the patients recovered and the RT-PCR tests were negative, results in massive load of the viral in water environments. Numerous studies reported the presence of SARS-CoV-2 in wastewater samples. The risk of contaminating water bodies in the regions which suffer from the lack of proper sanitation system and wastewater treatment plants (mostly in developing countries) is higher. Since solar water disinfection (SODIS) is usually used by people in developing countries, there is a concern about using this method during the pandemic. Because the SARS-CoV-2 can be eliminated by high temperature (>56 °C) and UVC wavelength (100-280 nm) while SODIS systems mainly work at lower temperature (<45 °C) and use the available UVA (315-400 nm). Thus, during a situation like the ongoing pandemic using SODIS method for wastewater treatment (or providing drinking water) is not a reliable method. It should be reminded that the main aim of the present study is not just to give insights about the possibilities and risks of using SODIS during the ongoing pandemic but it has broader prospect for any future outbreak/pandemic that results in biological contamination of water bodies. Nevertheless, some experimental studies seem to be necessary by all researchers under conditions similar to developing countries.
Effervescent ferrate(VI)-based tablets as an effective means for removal SARS-CoV-2 RNA, pharmaceuticals and resistant bacteria from wastewater
Waterborne pathogens including viruses, bacteria and micropollutants secreted from population can spread through the sewerage system. In this study, the efficiency of unique effervescent ferrate-based tablets was evaluated for total RNA and DNA removal, disinfection and degradation of micropollutants in hospital wastewater. For the purpose of testing, proposed tablets (based on citric acid or sodium dihydrogen phosphate) were used for various types of hospital wastewater with specific biological and chemical contamination. Total RNA destruction efficiency using tablets was 70-100% depending on the type of acidic component. DNA destruction efficiency was lower on the level 51-94% depending on the type of acidic component. In addition, our study confirms that effervescent ferrate-based tablets are able to efficiently remove of SARS-CoV-2 RNA from wastewater. Degradation of often detected micropollutants (antiepileptic, antidepressant, antihistamine, hypertensive and their metabolites) was dependent on the type of detected pharmaceuticals and on the acidic component used. Sodium dihydrogen phosphate based tablet appeared to be more effective than citric acid based tablet and removed some pharmaceuticals with efficiency higher than 97%. Last but not least, the disinfection ability was also verified. Tableted ferrates were confirmed to be an effective disinfectant and no resistant microorganisms were observed after treatment. Total and antibiotic resistant bacteria (coliforms and enterococci) were determined by cultivation on diagnostic selective agar growth media.
A review on the potential of photocatalysis in combatting SARS-CoV-2 in wastewater
Photocatalytic technology offers powerful virus disinfection in wastewater via oxidative capability with minimum harmful by-products generation. This review paper aims to provide state-of-the-art photocatalytic technology in battling transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater. Prior to that, the advantages and limitations of the existing conventional and advanced oxidation processes for virus disinfection in water systems were thoroughly examined. A wide spectrum of virus degradation by various photocatalysts was then considered to understand the potential mechanism for deactivating this deadly virus. The challenges and future perspectives were comprehensively discussed at the end of this review describing the limitations of current photocatalytic technology and suggesting a realistic outlook on advanced photocatalytic technology as a potential solution in dealing with similar upcoming pandemics. The major finding of this review including discovery of a vision on the possible photocatalytic approaches that have been proven to be outstanding against other viruses and subsequently combatting SARS-CoV-2 in wastewater. This review intends to deliver insightful information and discussion on the potential of photocatalysis in battling COVID-19 transmission through wastewater.
Direct and indirect effects of SARS-CoV-2 on wastewater treatment
The novel SARS-CoV-2 is expanding internationally. While the current focus is on limiting its transmission from direct contact with infected patients and surfaces during the pandemic, the secondary transmission potential via sewage should not be underestimated, especially in low-income and developing countries with weak wastewater treatment technologies. Recent studies have indicated SARS-CoV-2 positivity also be detected in the feces of patients. Therefore, the risk of transmission and infection can be increased into sewage by the fecal-oral way, mainly in some parts of the globe with a high amount of open defecation. This review collected scattered data and recent studies about the direct and indirect effects of coronavirus in the water cycle. The direct impacts of COVID-19 on wastewater are related to the presence of the coronavirus and suitable viral removal methods in different phases of treatment in wastewater treatment plants. The indirect effects of COVID-19 on wastewater are related to the overuse of cleaning and disinfecting products to protect against viral infection and the overuse of certain drugs to protect against virus or novel mental problems and panic to COVID-19 and consequently their presence in wastewater. This unexpected situation leads to changes in the quality of wastewater and brings adverse and harmful effects for the human, aquatic organisms, and the environment. Therefore, applying effective wastewater treatment technologies with low toxic by-products in wastewater treatment plants will be helpful to prevent the increasing occurrence of these extra contaminants in the environment.
Surveillance of SARS-CoV-2 in sewage and wastewater treatment plants in Mexico
The SARS-CoV-2 virus causing COVID-19 is spread in sewage by the stool of infected individuals, and viral material in sewage can be quantified using molecular tools. This study aimed to monitor the presence of SARS-CoV-2 RNA in sewage in Mexico based on RdRP, S, and N gene analysis. The influent, effluent, and activated sludge from two domestic wastewater treatment plants (WWTP) were evaluated from the early stage of the epidemic to July 2020. Additionally, sampling points in sewer systems were examined, comparing two different RNA-concentration methods: centrifugal ultrafiltration and adsorption-based methods. The adsorption method resulted in RNA titration that was two orders of magnitude higher than with ultrafiltration (up to 3.38 log copies RdRP gene/mL of sewage). The surveillance of SARS-CoV-2 RNA in the influent of two WWTP correlated with the cumulative COVID-19 cases in Queretaro city. The higher RNA level in secondary sludge compared to influent suggests that viral RNA becomes concentrated in activated sludge. This result supports SARS-CoV-2 RNA removal in WWTP, where all effluent samples were negative for virus quantification. This work proves that wastewater-based epidemiology is a very valuable tool in developing countries where diagnostic tests for COVID-19 are limited.
Approaches applied to detect SARS-CoV-2 in wastewater and perspectives post-COVID-19
Currently, SARS-CoV-2 has been detected in the influent of wastewater treatment plants (WWTP), pumping stations, manholes, sewer networks and sludge of WWTP and facilities of countries as France, Spain, Italy, Netherlands, United States, Australia, Ecuador, Brazil and Japan. Although this virus has been detected in the wastewater streams, there is no robust method for its detection and quantification in wastewater. This review compiled and analyzed the virus concentration approaches applied to detect the SARS-CoV-2, besides to provide insights about the methodology for viral concentration, limit of detection, occurrence, persistence, and perspectives post-COVID-19 related with the implications of the virus presence in wastewater. The SARS-COV-2 detection in wastewater has been related to virus concentration methods, which present different recovery rates of the virus. The most used viral concentration methods have been the polyethylene glycol (PEG) for precipitation of viral material and the ultrafiltration at molecular weight level. After viral concentration, the detection and quantification of SARS-COV-2 in wastewater are mainly via quantitative reverse transcription polymerase chain reaction (RT-qPCR), which is the clinical assay adapted for environmental purposes. Although in some experiments the positive control during RT-qPCR is running a surrogated virus (e.g., Mengovirus or Dengue virus), RT-qPCR or reverse transcription droplet digital PCR (RT-ddPCR) targeting the gene encoding nucleocapsid (N1, N2 and N3) of SARS-COV-2 are highly recommended to calculate the limit of detection in wastewater samples. Current results suggest that a rigorous methodology to elucidate the positive cases in a region from genomic copies in wastewater is needed.
Diatoms recovery from wastewater: Overview from an ecological and economic perspective
Alarming water pollution is toxic to the aquatic ecosystem leading to a sharp decline in species diversity. Diatoms have great potency to survive in contaminated water bodies, hence they can be compelling bioindicators to monitor the change in the environmental matrices effectively. Around the globe, researchers are intended to evaluate the impact of pollution on the diatoms recovery and techniques used for the assessment. The diatoms are precious for futuristic need viz. value-added products, energy generation, pharmaceuticals, and aquaculture feedstocks. All these applications led to a significant rise in diatoms research among the scientific community. This review presents different isolation practices, cultivation, and other challenges associated with the diatoms. A precise focus is given to diatoms isolation techniques from highly polluted water bodies with the main thrust towards obtaining an axenic culture to elucidate the significance of pure diatom cultures. Recovery of "" from polluted water signifies the prospective ecological and economic aspects.
Coronavirus 2 (SARS-CoV-2) in water environments: Current status, challenges and research opportunities
The outbreak of COVID-19 has posed enormous health, social, environmental and economic challenges to the entire human population. Nevertheless, it provides an opportunity for extensive research in various fields to evaluate the fate of the crisis and combat it. The apparent need for imperative research in the biological and medical field is the focus of researchers and scientists worldwide. However, there are some new challenges and research opportunities in the field of water and wastewater treatment concerning the novel coronavirus 2 (SARS-CoV-2). This article briefly summarizes the latest literature reporting the presence of SARS-CoV-2 in water and wastewater/sewage. Furthermore, it highlights the challenges, potential opportunities and research directions in the water and wastewater treatment field. Some of the significant challenges and research opportunities are the development of standard techniques for the detection and quantification of SARS-CoV-2 in the water phase, assessment of favorable environments for its survival and decay in water; and development of effective strategies for elimination of the novel virus from water. Advancement in research in this domain will help to protect the environment, human health, and managing this type of pandemic in the future.
Performance evaluation of conventional membrane bioreactor and moving bed membrane bioreactor for synthetic textile wastewater treatment
In this study, conventional membrane bioreactor (MBR) and moving bed-membrane bioreactor (MB-MBR) processes were compared in synthetic textile wastewater treatment. For this purpose, the bioreactors were operated as a conventional MBR, an MB-MBR with a biocarrier filling ratio of 20 % and an MB-MBR with a biocarrier filling ratio of 10 %, respectively. In the conventional MBR operation, 93.1 % chemical oxygen demand (COD) and 87.1 % color (Reactive Red 390) removal efficiencies were obtained. In both MB-MBR operations, almost equal COD and color removal efficiencies were found as 98.5 % and 89.5 %, respectively. Moreover, offline physical and chemical membrane cleaning processes were applied every other day and every 15 days throughout the conventional MBR operation, respectively, while no physical or chemical membrane cleaning was required during both MB-MBR operations. Furthermore, lower polysaccharide concentrations of extracellular polymeric substances (EPS) and floc sizes of sludge and higher zeta potential of sludge were determined in MB-MBR. Considering the obtained results, it may be stated that the MB-MBR process is an attractive treatment technology for reducing membrane fouling propensity for treatment of textile wastewater.
The role of wastewater treatment plants as tools for SARS-CoV-2 early detection and removal
The world is facing the third coronavirus caused pandemic in less than twenty years. The SARS-CoV-2 virus not only affects the human respiratory system, but also the gastrointestinal tract. The virus has been found in human feces, in sewage and in wastewater treatment plants. It has the potential to become a panzootic disease, as it is now proven that several mammalian species become infected. Since it has been shown that the virus can be detected in sewage even before the onset of symptoms in the local population, Wastewater Based Epidemiology should be developed not only to localize infection clusters of the primary wave but also to detect a potential second, or subsequent, wave. To prevent a panzootic, virus removal techniques from wastewater need to be implemented to prevent the virus dissemination into the environment. In that context, this review presents recent improvements in all the fields of wastewater treatment from treatment ponds to the use of algae or nanomaterials with a particular emphasis on membrane-based techniques.
System dynamics evaluation of household water use behavior and associated greenhouse gas emissions and environmental costs: A case study of Taipei city
Taiwan is an island surrounded by sea and only 19 % of its freshwater usage is for domestic applications. A system dynamic model was developed to investigate interactions between household water use behaviors (toilet flushing, clothes washing, bathing/showering, and cleaning) and associated greenhouse gas emissions and environmental costs. Six hundred and fifty face-to-face interviews were conducted in 12 districts of Taipei. The results showed that the respondents' individual attributes were not significantly related to water use behaviors. The highest volume of water was used for cleaning (27.7 %), followed by clothes washing (26.2 %), bathing/showering (26.1 %), and toilet flushing (20.0 %). Five water management scenarios with 5 %-20 % reductions in water volume from different water use behaviors were simulated. The maximum reduction in water use (6.27 t) was found in the fifth scenario (20 % reduction), which reflected the priority the respondents gave to save water if its price increased. 27.2 % of respondents had water saving appliances; 20.5 % and 16.4 % of the appliances were toilets and shower heads, respectively. The environmental cost of GHG emissions associated with water use behavior was US$0.001/t, causing an 8% increase in water price. A better understanding of household water use behaviors is needed to develop bottom-up strategies or measures for sustainable water management. Water saving measures or strategies would lead to targets being met in a short time.