JOURNAL OF MOLECULAR NEUROSCIENCE

Sex Differences in Blood Accumulation of Neurodegenerative-Related Proteins and Antioxidant Responses to Regular Physical Exercise
Chelucci E, Scarfò G, Piccarducci R, Rizza A, Fusi J, Epifani F, Carpi S, Polini B, Betti L, Costa B, Taliani S, Cela V, Artini P, Daniele S, Martini C and Franzoni F
Physical activity has been demonstrated to improve cognitive function, thereby preventing/slowing neurodegenerative diseases (NDs). Biological responses to physical activity and vulnerabilities to NDs are emerging to be gender-related. Herein, known ND-associated markers (β-amyloid, tau, α-synuclein), main sex steroid hormones, antioxidant responses, and key gene transcription modulators were evaluated in the blood of physically active and sedentary women and men. In our hands, females presented higher basal erythrocytes β-amyloid and α-synuclein amounts than males. Regular physical activity was able to significantly reduce the erythrocyte content of β-amyloid in females and the tau levels in males, suggesting that these differences may be mediated by organizational actions of sex steroid hormones during development. Furthermore, despite a comparable plasma antioxidant capability (AOC) between males and females, in the latter group, physical activity significantly enhances AOC versus peroxynitrite radicals only. Finally, regular physical activity modulated the levels of transcription factor Nrf2 in erythrocytes, as well as the plasma concentration of the microRNA miR-195 and miR-153, suggesting the promotion of antioxidant/autophagic processes associated with ND-related proteins. Overall, these results could shed light on how cerebral adaptations to physical activity differ between males and females, especially with regard to blood accumulation of ND proteins and mechanisms of antioxidant responses to regular exercise.
Investigation of Association Between Expression of DYX1C1, KIAA0319, and ROBO1 Genes and Specific Learning Disorder in Children and Adolescents
Bayyurt B, Şahin NÖ and Işık CM
Specific learning disorder (SLD) is prevalent worldwide and is a complex disorder with variable symptoms and significant differences among individuals. Epigenetic markers may alter susceptibility to neurodevelopmental disorders (NDDs). Aberrant expression of protein-coding (mRNA) genes in this pathology shows that the detection of epigenetic molecular biomarkers is of increasing importance in the diagnosis and treatment of individuals with SLD. We compared gene expression level of dyslexia susceptibility 1 candidate gene 1 (DYX1C1), dyslexia-associated protein KIAA0319 (KIAA0319), and roundabout guidance receptor 1 (ROBO1) between children with SLD and healthy children by performing quantitative polymerase chain reaction (qPCR). In addition, we evaluated these gene expressions of severe children with SLD compared to non-severe and male SLD children compared to females. The expression of the DYX1C1, KIAA0319, and ROBO1 genes was statistically significantly upregulated in children with SLD (P < 0.05*). DYX1C1 was also upregulated in severe SLD children (P = 0.03*). In addition, KIAA0319 and ROBO1 genes were differentially expressed in male SLD children compared to females (P < 0.05*). Furthermore, we found that DYX1C1 and ROBO1 genes significantly affect the likelihood of the SLD (respectively, P < 0.001** and P = 0.007*). We expect that the findings provided from this study may contribute to the determination expression level of the relevant genes in the diagnosis, prognosis, and treatment of SLD. In addition, our findings could be a guide for future epigenetics studies on the use of the DYX1C1, KIAA0319, and ROBO1 in therapeutic applications in the SLD.
A Ketogenic Diet Affects Gut Microbiota by Regulating Gut Microbiota and Promoting Hippocampal TRHR Expression to Combat Seizures
Xiong W, Lin X, Lin X, Wu L and Lin W
With the persistent challenge that epilepsy presents to therapeutic avenues, the study seeks to decipher the effects of the ketogenic diet (KD) on gut microbiota and subsequent epileptic outcomes. Mouse fecal samples from distinct KD and control diet (CD) cohorts underwent 16S rRNA sequencing. Differential genes of epileptic mice under these diets were sourced from the GEO database. The study melded in vivo and in vitro techniques to explore the nuanced interactions between KD, gut microbiota, and hippocampal TRHR dynamics. The KD regimen was found to result in a notable reduction in gut microbiota diversity when compared to the CD groups. Distinctive microbial strains, which are hypothesised to interact with epilepsy through G protein-coupled receptors, were spotlighted. In vivo, explorations affirmed that gut microbiota as central to KD's anti-epileptic efficacy. Of 211 distinguished genes, the neuroactive ligand-receptor interaction pathway was underscored, particularly emphasizing TRHR and TRH. Clinical observations revealed a surge in hippocampal TRHR and TRH expressions influenced by KD, mirroring shifts in neuronal discharges. The KD, leveraging gut microbiota alterations, amplifies hippocampal TRHR expression. This finding provides a novel intervention strategy to reduce seizures.
Antisecretory Factor 16 (AF16): A Promising Avenue for the Treatment of Traumatic Brain Injury-An In Vitro Model Approach
Vahrmeijer N, Kriel J, Harrington BM, van Staden ADP, Vlok AJ, Engelbrecht L, Du Toit A and Loos B
Traumatic brain injury (TBI) is caused by an external mechanical force to the head, resulting in abnormal brain functioning and clinical manifestations. Antisecretory factor (AF16) is a potential therapeutic agent for TBI treatment due to its ability to inhibit fluid secretion and decrease inflammation, intracranial pressure, and interstitial fluid build-up, key hallmarks presented in TBI. Here, we investigated the effect of AF16 in an in vitro model of neuronal injury, as well as its impact on key components of the autophagy pathway and mitochondrial dynamics. N2A cells were treated with AF16, injured using a scratch assay, and analysed using confocal microscopy, correlative light and electron microscopy (CLEM), flow cytometry, and western blotting. Our results reveal that AF16 enhances autophagy activity, regulates mitochondrial dynamics, and provides protection as early as 6 h post-injury. Fluorescently labelled AF16 was observed to localise to lysosomes and the autophagy compartment, suggesting a role for autophagy and mitochondrial quality control in conferring AF16-associated neuronal protection. This study concludes that AF16 has potential as a therapeutic agent for TBI treatment through is regulation of autophagy and mitochondrial dynamics.
Mitophagy Unveiled: Exploring the Nexus of Mitochondrial Health and Neuroendocrinopathy
Oyovwi MO, Ugwuishi EW, Udi OA and Uchechukwu GJ
Mitochondria play a pivotal role in cellular metabolism, energy production, and apoptotic signaling, making mitophagy, the selective degradation of damaged mitochondria, crucial for mitochondrial health. Dysregulation of mitophagy has been implicated in various neuroendocrinopathies, yet the mechanisms linking these processes remain poorly understood. This review aims to explore the intersection between mitophagy and neuroendocrinopathy, addressing the critical gaps in knowledge regarding how mitochondrial dysfunction may contribute to the pathophysiology of neuroendocrine disorders. We conducted a comprehensive literature review of studies published on mitophagy and neuroendocrinopathies, focusing on data that elucidate the pathways involved and the clinical implications of mitochondrial health in neuroendocrine contexts. Our findings indicate that altered mitophagy may lead to the accumulation of dysfunctional mitochondria, contributing to neuroendocrine dysregulation. We present evidence linking impaired mitochondrial clearance to disease models of conditions such as metabolic syndrome, depression, and stress-related disorders, highlighting the potential for therapeutic interventions targeting mitophagy. While significant advances have been made in understanding mitochondrial biology, the direct interplay between mitophagy and neuroendocrinopathies remains underexplored. This review underscores the necessity for further research to elucidate these connections, which may offer novel insights into disease mechanisms and therapeutic strategies for treating maladaptive neuroendocrine responses.
Role and Interplay of Different Signaling Pathways Involved in Sciatic Nerve Regeneration
Jalise SZ, Habibi S, Fath-Bayati L, Habibi MA, Ababzadeh S and Hosseinzadeh F
Regeneration of the sciatic nerve is a sophisticated process that involves the interplay of several signaling pathways that orchestrate the cellular responses critical to regeneration. Among the key pathways are the mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/AKT, cyclic adenosine monophosphate (cAMP), and Janus kinase/signal transducers and transcription activators (JAK/STAT) pathways. In particular, the cAMP pathway modulates neuronal survival and axonal regrowth. It influences various cellular behaviors and gene expression that are essential for nerve regeneration. MAPK is indispensable for Schwann cell differentiation and myelination, whereas PI3K/AKT is integral to the transcription, translation, and cell survival processes that are vital for nerve regeneration. Furthermore, GTP-binding proteins, including those of the Ras homolog gene family (Rho), regulate neural cell adhesion, migration, and survival. Notch signaling also appears to be effective in the early stages of nerve regeneration and in preventing skeletal muscle fibrosis after injury. Understanding the intricate mechanisms and interactions of these pathways is vital for the development of effective therapeutic strategies for sciatic nerve injuries. This review underscores the need for further research to fill existing knowledge gaps and improve therapeutic outcomes.
Valproate Administration to Adult 5xFAD Mice Upregulates Expression of Neprilysin and Improves Olfaction and Memory
Vasilev DS, Dubrovskaya NM, Tumanova NL, Tursunov AN and Nalivaeva NN
It is well known that the development of neurodegeneration, and especially Alzheimer's disease (AD), is often accompanied by impaired olfaction which precedes memory loss. A neuropeptidase neprilysin (NEP)-a principal amyloid-degrading enzyme in the brain-was also shown to be involved in olfactory signalling. Previously we have demonstrated that 5xFAD mice develop olfactory deficit by the age of 6 months which correlated with reduced NEP expression in the brain areas involved in olfactory signalling. The aim of this study was to analyse the effect of administration of a histone deacetylase inhibitor, valproic acid (VA), to adult 5xFAD mice on their olfaction and memory as well as on brain morphology and NEP expression in the parietal cortex (PC) and hippocampus (Hip). The data obtained demonstrated that administration of VA to 7-month-old mice (200 mg/kg of body weight) for 28 days resulted in improvement of their memory in the Morris water maze as well as olfaction in the odor preference and food search tests. This correlated with increased expression of NEP in the PC and Hip as well as a reduced number of amyloid plaques in these brain areas. This strongly suggests that NEP can be considered an important therapeutic target not only in AD but also in olfactory loss.
The Best-Worst Job in the World: When Reality Meets the Brain
Shomron N
The Inhibition of Reactive Oxygen Species Modulator 1 Attenuates Sevoflurane-Induced Neural Injury via Reducing Apoptosis and Oxidative Stress
Gu L, Wang X, Wu Z and Chen J
Sevoflurane causes neural injury by promoting apoptosis and oxidative stress. Reactive oxygen species modulator 1 (ROMO1) regulates apoptosis and oxidative stress, while its role in sevoflurane-induced neural injury remains unclear. This study intended to investigate the effect of ROMO1 knockdown on viability, apoptosis, and oxidative stress in sevoflurane-treated HT22 cells and its downstream pathway. HT22 cells were untreated (blank control), or treated with 1%, 2%, and 4% sevoflurane, respectively. Moreover, HT22 cells were transfected with siROMO1 small interfering RNA (siROMO1) or negative control siRNA (siNC) and then stimulated with 4% sevoflurane for further assays. Sevoflurane dose-dependently decreased cell viability and increased apoptosis rate versus blank control in HT22 cells. Sevoflurane elevated reactive oxygen species (ROS) fluorescence intensity, malondialdehyde (MDA), and lactate dehydrogenase (LDH) release, while reducing superoxide dismutase (SOD) activity in a dose-dependent manner versus blank control in HT22 cells. It also dose-dependently increased the relative mRNA and protein expressions of ROMO1 versus blank treatment in HT22 cells. Moreover, siROMO1 plus 4% sevoflurane increased cell viability, while decreasing apoptosis rate, ROS fluorescence intensity, MDA, and LDH release versus siNC plus 4% sevoflurane in HT22 cells. siROMO1 plus 4% sevoflurane elevated the phosphorylation of protein kinase B (AKT) versus siNC plus 4% sevoflurane in HT22 cells. ROMO1 inhibition reverses sevoflurane-induced neural injury by reducing apoptosis and oxidative stress in HT22 cells. The results indicate that ROMO1 may be a potential target for the management of sevoflurane-induced neural injury.
Effects of Electroacupuncture at Varied Frequencies on Analgesia and Mechanisms in Sciatic Nerve Cuffing-Induced Neuropathic Pain Mice
Fang K, Cheng W and Yu B
Addressing the intricate challenge of chronic neuropathic pain has significant implications for the physical and psychological well-being of patients, given its enduring nature. In contrast to opioids, electroacupuncture (EA) may potentially provide a safer and more efficacious therapeutic alternative. Our objective is to investigate the distinct analgesic effects and potential mechanisms of EA at frequencies of 2 Hz, 100 Hz, and 18 kHz in order to establish more precise frequency selection criteria for clinical interventions. Analgesic efficacy was evaluated through the measurement of mice's mechanical and thermal pain thresholds. Spinal cord inflammatory cytokines and neuropeptides were quantified via Quantitative Real-time PCR (qRT-PCR), Western blot, and immunofluorescence. Additionally, RNA sequencing (RNA-Seq) was conducted on the spinal cord from mice in the 18 kHz EA group for comprehensive transcriptomic analysis. The analgesic effect of EA on neuropathic pain in mice was frequency-dependent. Stimulation at 18 kHz provided superior and prolonged relief compared to 2 Hz and 100 Hz. Our research suggests that EA at frequencies of 2 Hz, 100 Hz, and 18 kHz significantly reduce the release of inflammatory cytokines. The analgesic effects of 2 Hz and 100 Hz stimulation are due to frequency-dependent regulation of opioid release in the spinal cord. Furthermore, 18 kHz stimulation has been shown to reduce spinal neuronal excitability by modulating the serotonergic pathway and downstream receptors in the spinal cord to alleviate neuropathic pain.
A Novel Pathogenic Mutation in WNK1 Gene Causing HSAN Type II in Three Siblings
Naghinejad M, Ebrahimi A, Shekari Khaniani M and Mansoori Derakhshan S
Hereditary sensory and autonomic neuropathy (HSAN) is a rare genetic disorder that primarily affects the peripheral nervous system, leading to a progressive loss of the ability to perceive pain, temperature, and touch. This condition can result in severe complications, including injuries and infections due to the inability to feel pain. HSAN is classified into nine types, with types I and VII exhibiting autosomal dominant inheritance, while the others follow an autosomal recessive pattern. In this study, we examined three affected brothers of Turkish Azeri descent, aged 20, 23, and 25 years. They presented symptoms such as a lack of temperature and pain sensation, frequent wounds and infections, self-harm, and hyperkeratosis. To identify the genetic cause of their condition, whole-exome sequencing (WES) was performed, followed by Sanger sequencing to confirm the findings. The results revealed a homozygous likely pathogenic nonsense mutation, c.2971C > T (p.Arg991Ter), in exon 9 of the WNK1 gene. This mutation results in the truncation of three isoforms of the WNK1 protein, which are essential for pain perception. This discovery enhances our understanding of HSAN and highlights the importance of genetic testing for accurate diagnosis and future screening.
Genomic Validation in the UK Biobank Cohort Suggests a Role of C8B and MFG-E8 in the Pathogenesis of Trigeminal Neuralgia
Lafta MS, Rukh G, Hamdeh SA, Molero Y, Sokolov AV, Rostami E and Schiöth HB
Trigeminal neuralgia (TN) is a severe facial pain disease of uncertain pathophysiology and unclear genetic background. Although recent research has reported a more important role of genetic factors in TN pathogenesis, few candidate genes have been proposed to date. The present study aimed to identify independent genetic variants in the protein-coding genes associated with TN. We focused on genes previously linked to TN based on the results of four proteomic studies conducted by our research team. The goal was to validate these findings on the genetic level to enhance our understanding of the role of genetics in TN. The study is based on the participants from UK Biobank cohort. Following quality control, 175 independent single nucleotide polymorphisms (SNPs) in 17 genes were selected. The study sample comprised of diagnosed TN cases (N = 555) and randomly matched controls (N = 6245) based on specific criteria. Two SNPs corresponding to C8B rs706484 [odds ratio (OR) (95% confidence interval (CI)): 1.357 (1.158-1.590); p: 0.00016] and MFG-E8 rs2015495 [OR (95% CI): 1.313 (1.134-1.521); p: 0.00028] showed significant positive association with TN, indicating a positive effect of the SNP alleles on gene expression and disease risk. Interestingly, both SNPs are Expression Quantitative Trait Loci (eQTLs), and are associated with changes in the expression activity of their corresponding gene. Our findings suggest novel genetic associations between C8B, a key component of the complement system, and MFG-E8, which plays a role in regulating neuroinflammation, in relation to TN. The identified genetic variations may help explain why some individuals develop TN while others do not, indicating a potential genetic predisposition to the condition.
Clinical and Molecular Profiles of a Cohort of Egyptian Patients with Collagen VI-Related Dystrophy
Sharaf-Eldin WE, Rafat K, Issa MY, Elbendary HM, Eissa NR, Hawaary B, Gaboon NEA, Maroofian R, Gleeson JG, Essawi ML and Zaki MS
Collagen VI-related dystrophies (COL6-RD) display a wide spectrum of disease severity and genetic variability ranging from mild Bethlem myopathy (BM) to severe Ullrich congenital muscular dystrophy (UCMD) and the intermediate severities in between with dual modes of inheritance, dominant and recessive. In the current study, next-generation sequencing demonstrated potential variants in the genes coding for the three alpha chains of collagen VI (COL6A1, COL6A2, or COL6A3) in a cohort of Egyptian patients with progressive muscle weakness (n = 23). Based on the age of disease onset and the patient clinical course, subjects were diagnosed as follows: 12 with UCMD, 8 with BM, and 3 with intermediate disease form. Fourteen pathogenic variants, including 5 novel alterations, were reported in the enrolled subjects. They included 3 missense, 3 frameshift, and 6 splicing variants in 4, 3, and 6 families, respectively. In addition, a nonsense variant in a single family and an inframe variant in 3 different families were also detected. Recessive and dominant modes of inheritance were recorded in 9 and 8 families, respectively. According to ACMG guidelines, variants were classified as pathogenic (n = 7), likely pathogenic (n = 4), or VUS (n = 3) with significant pathogenic potential. To our knowledge, the study provided the first report of the clinical and genetic findings of a cohort of Egyptian patients with collagen VI deficiency. Inter- and intra-familial clinical variability was evident among the study cohort.
The Deficiency of the ASD-Related Gene CHD8 Disrupts Behavioral Patterns and Inhibits Hippocampal Neurogenesis in Mice
Niu X, Huang F, Lyu H, Liu J, Zhang X, Bian J, Gao Z and Liu B
Chromodomain helicase DNA-binding 8 (CHD8) is a gene that poses a high risk for autism spectrum disorder (ASD) and neurological development delay. Nevertheless, the impact of CHD8 haploinsufficiency on both hippocampus neurogenesis and behavior remains uncertain. Here, we performed behavioral assessments on male and female CHD8 heterozygous mice. The study discovered that both male and female CHD8 heterozygous mice displayed an impairment in preference for social novelty. Concurrently, CHD8 heterozygous mice exhibited anxiety-like behavior. However, its cognitive capacity for learning and memory is within the expected range. Furthermore, we discovered a reduction in the number of both immature and mature new neurons in mice with CHD8 heterozygous, resulting in an impeded neurogenesis process in the hippocampus. Taken together, our findings indicate that CHD8 plays a crucial role in the regulation of hippocampal neurogenesis, and further suggest that ASD-like behaviors observed in CHD8 heterozygous mice may be associated with disruptions in hippocampal neurogenesis.
Identification of Pathogenic Missense Mutations of NF1 Using Computational Approaches
Chen J, Li Z, Wu Y, Li X, Chen Z, Chen P, Ding Y, Wu C and Hu L
Neurofibromatosis type 1 (NF1) is a prevalent autosomal dominant disorder caused by mutations in the NF1 gene, leading to multisystem disorders. Given the critical role of cysteine residues in protein stability and function, we aimed to identify key NF1 mutations affecting cysteine residues that significantly contribute to neurofibromatosis pathology. To identify the most critical mutations in the NF1 gene that contribute to the pathology of neurofibromatosis, we employed a sophisticated computational pipeline specifically designed to detect significant mutations affecting the NF1 gene. Our approach involved an exhaustive search of databases such as the Human Gene Mutation Database (HGMD), UniProt, and ClinVar for information on missense mutations associated with NF1. Our search yielded a total of 204 unique cysteine missense mutations. We then employed in silico prediction tools, including PredictSNP, iStable, and Align GVGD, to assess the impact of these mutations. Among the mutations, C379R, R1000C, and C1016Y stood out due to their deleterious effects on the biophysical properties of the neurofibromin protein, significantly destabilizing its structure. These mutations were subjected to further phenotyping analysis using SNPeffect 4.0, which predicted disturbances in the protein's chaperone binding sites and overall structural stability. Furthermore, to directly visualize the impact of these mutations on protein structure, we utilized AlphaFold3 to simulate both the wild-type and mutant NF1 structures, revealing the significant effects of the R1000C mutation on the protein's conformation. In conclusion, the identification of these mutations can play a pivotal role in advancing the field of precision medicine and aid in the development of effective drugs for associated diseases.
Exploring the hub Genes and Potential Mechanisms of Complement system-related Genes in Parkinson Disease: Based on Transcriptome Sequencing and Mendelian Randomization
Wang X, Yang G, Lai Y, Li Y and Liu X
An accurate diagnosis of Parkinson's disease (PD) remains challenging and the exact cause of the disease is unclean. The aims are to identify hub genes associated with the complement system in PD and to explore their underlying molecular mechanisms. Initially, differentially expressed genes (DEGs) and key module genes related to PD were mined through differential expression analysis and WGCNA. Then, differentially expressed CSRGs (DE-CSRGs) were obtained by intersecting the DEGs, key module genes and CSRGs. Subsequently, MR analysis was executed to identify genes causally associated with PD. Based on genes with significant MR results, the expression level and diagnostic performance verification were achieved to yield hub genes. Functional enrichment and immune infiltration analyses were accomplished to insight into the pathogenesis of PD. qRT-PCR was employed to evaluate the expression levels of hub genes. After MR analysis and related verification, CD93, CTSS, PRKCD and TLR2 were finally identified as hub genes. Enrichment analysis indicated that the main enriched pathways for hub genes. Immune infiltration analysis found that the hub genes showed significant correlation with a variety of immune cells (such as myeloid-derived suppressor cell and macrophage). In the qRT-PCR results, the expression levels of CTSS, PRKCD and TLR2 were consistent with those we obtained from public databases. Hence, we mined four hub genes associated with complement system in PD which provided novel perspectives for the diagnosis and treatment of PD.
Molecular and Clinical Characterization of a Cohort of Autosomal Recessive Sensorineural Hearing Loss in Egyptian Patients
Sayed-Ahmed MM, El-Bassyouni HT, Afifi HH, Essawi ML, Taher MB, Gadelhak MI, Zaytoun RA, Abdelmonem AA and Elbagoury NM
Hearing loss (HL) is one of the most common health problems worldwide. Autosomal recessive non-syndromic sensorineural hearing loss (ARNSHL) represents a large portion of congenital hereditary HL. Our study was conducted on 13 patients from 13 unrelated families. The majority of patients presented with congenital severe to profound bilateral sensorineural HL. All patients were subjected to detailed family history and three-generation pedigree analysis to exclude any environmental cause and to ensure an autosomal recessive mode of inheritance. Molecular analysis was performed using the whole exome sequencing (WES) technique for the recruited patients. Three variants in the MYO7A and OTOF genes were reported for the first time in patients with ARNSHL (one nonsense, one frameshift, and one splice variant). Ten previously reported variants were detected in seven genes (GJB2, MYO15A, BSND, OTOF, CDH23, SLC26A4, and TMIE). They varied between missense, nonsense, frameshift, and splice variants. This study expands the molecular spectrum of two types of autosomal recessive deafness (types 2 and 9).
Investigating the Genetic Association of 40 Biochemical Indicators with Parkinson's Disease
Wang Z, Xia H, Shi J, Fan P, Cao Q, Ding Y, Du X and Yang X
The mechanisms of Parkinson's disease (PD) are not fully understood, which hinders the development of effective therapies. Research indicates that lower levels of biochemical indicators like bilirubin, vitamin D, and cholesterol may elevate the risk of PD. However, clinical studies on abnormal levels of biochemical indicators in PD patients' circulation are inconsistent, leading to ongoing debate about their association with PD. Here, we investigate the genetic correlation between 40 biochemical indicators and PD using a bidirectional two-sample Mendelian randomization (MR) approach to uncover potential causal relationships. Data from genome-wide association studies (GWAS) were utilized, with genetic variations from specific lineages serving as instrumental variables (IVs). The methodology followed the STROBE-MR checklist and adhered to the three principal assumptions of MR. Statistical analyses employed methods including inverse variance weighting (IVW), MR-Egger, weighted median, and weighted mode. Biochemical indicators including albumin, C-reactive protein (CRP), and sex hormone-binding globulin (SHBG) showed significant associations with PD risk. Elevated levels of albumin (OR = 1.246, 95% CI 1.006-1.542, P = 0.043) and SHBG (OR = 1.239, 95% CI 1.065-1.439, P = 0.005) were linked to higher PD risk. Conversely, increased CRP levels (OR = 0.663, 95% CI 0.517-0.851; P = 0.001) could potentially lower PD risk. The robustness of the results was confirmed through various MR analysis techniques, including assessments of directional pleiotropy and heterogeneity using MR-Egger intercept and MR-PRESSO methods. This study systematically reveals, for the first time at the genetic level, the relationship between 40 biochemical indicators and PD risk. Our research verifies the role of inflammation in PD and provides new genetic evidence, further advancing the understanding of PD pathogenesis. The study shows a positive correlation between albumin and SHBG with PD risk and a negative correlation between CRP and PD risk. This study identifies for the first time that SHBG may be involved in the onset of PD and potentially worsen disease progression.
Signaling Pathways Concerning Mitochondrial Dysfunction: Implications in Neurodegeneration and Possible Molecular Targets
Sharma Y, Gupta JK, Babu MA, Singh S and Sindhu RK
Mitochondrion is an important organelle present in our cells responsible for meeting energy requirements. All higher organisms rely on efficient mitochondrial bioenergetic machinery to sustain life. No other respiratory process can produce as much power as generated by mitochondria in the form of ATPs. This review is written in order to get an insight into the magnificent working of mitochondrion and its implications in cellular homeostasis, bioenergetics, redox, calcium signaling, and cell death. However, if this machinery gets faulty, it may lead to several disease states. Mitochondrial dysfunctioning is of growing concern today as it is seen in the pathogenesis of several diseases which includes neurodegenerative disorders, cardiovascular disorders, diabetes mellitus, skeletal muscle defects, liver diseases, and so on. To cover all these aspects is beyond the scope of this article; hence, our study is restricted to neurodegenerative disorders only. Moreover, faulty functioning of this organelle can be one of the causes of early ageing in individuals. This review emphasizes mutations in the mitochondrial DNA, defects in oxidative phosphorylation, generation of ROS, and apoptosis. Researchers have looked into new approaches that might be able to control mitochondrial failure and show a lot of promise as treatments.
The Role of Non-Coding RNAs in Mitochondrial Dysfunction of Alzheimer's Disease
Abed S, Ebrahimi A, Fattahi F, Kouchakali G, Shekari-Khaniani M and Mansoori-Derakhshan S
Although brain amyloid-β (Aβ) peptide buildup is the main cause of Alzheimer's disease (AD), mitochondrial abnormalities can also contribute to the illness's development, as either a primary or secondary factor, as programmed cell death and efficient energy generation depend on the proper operation of mitochondria. As a result, non-coding RNAs (ncRNAs) may play a crucial role in ensuring that nuclear genes related to mitochondria and mitochondrial genes function normally. Interestingly, a significant number of recent studies have focused on the impact of ncRNAs on the expression of nucleus and mitochondrial genes. Additionally, researchers have proposed some intriguing therapeutic approaches to treat and reduce the severity of AD by adjusting the levels of these ncRNAs. The goal of this work was to consolidate the existing knowledge in this field of study by systematically investigating ncRNAs, with a particular emphasis on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and small nucleolar RNAs (snoRNAs). Therefore, the impact and processes by which ncRNAs govern mitochondrial activity in the onset and progression of AD are thoroughly reviewed in this article. Collectively, the effects of ncRNAs on physiological and molecular mechanisms associated with mitochondrial abnormalities that exacerbate AD are thoroughly reviewed in the current research, while also emphasizing the relationship between disturbed mitophagy in AD and ncRNAs.
The Role of Thioredoxin System in Shank3 Mouse Model of Autism
Bazbaz W, Kartawy M, Hamoudi W, Ojha SK, Khaliulin I and Amal H
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by difficulties in social interaction and communication, repetitive behaviors, and restricted interests. Unfortunately, the underlying molecular mechanism behind ASD remains unknown. It has been reported that oxidative and nitrosative stress are strongly linked to ASD. We have recently found that nitric oxide (NO•) and its products play an important role in this disorder. One of the key proteins associated with NO• is thioredoxin (Trx). We hypothesize that the Trx system is altered in the Shank3 KO mouse model of autism, which may lead to a decreased activity of the nuclear factor erythroid 2-related factor 2 (Nrf2), resulting in oxidative stress, and thus, contributing to ASD-related phenotypes. To test this hypothesis, we conducted in vivo behavioral studies and used primary cortical neurons derived from the Shank3 KO mice and human SH-SY5Y cells with SHANK3 mutation. We showed significant changes in the levels and activity of Trx redox proteins in the Shank3 KO mice. A Trx1 inhibitor PX-12 decreased Trx1 and Nrf2 expression in wild-type mice, causing abnormal alterations in the levels of synaptic proteins and neurotransmission markers, and an elevation of nitrosative stress. Trx inhibition resulted in an ASD-like behavioral phenotype, similar to that of Shank3 KO mice. Taken together, our findings confirm the strong link between the Trx system and ASD pathology, including the increased oxidative/nitrosative stress, and synaptic and behavioral deficits. The results of this study may pave the way for identifying novel drug targets for ASD.