The molecular features of lung cancer stem cells (LCSCs) in dedifferentiation process-driven epigenetic alterations
Cancer stem cells (CSCs) may be dedifferentiated somatic cells following oncogenic processes, representing a subpopulation of cells able to promote tumor growth with their capacities for proliferation and self-renewal, inducing lineage heterogeneity, which may be a main cause of resistance to therapies. It has been shown that the "less differentiated process" may have an impact on tumor plasticity, particularly when non-CSCs may dedifferentiate and become CSC-like. Bidirectional interconversion between CSCs and non-CSCs has been reported in other solid tumors, where the inflammatory stroma promotes cell reprogramming by enhancing Wnt signaling through NF-κB activation in association with intracellular signaling, which may induce cells' pluripotency, the oncogenic transformation can be considered another important aspect in the acquisition of "new" development programs with oncogenic features. During cell reprogramming, mutations represent an initial step towards dedifferentiation, in which tumour cells switch from a partially or terminally differentiated stage to a less differentiated stage that is mainly manifested by re-entry into the cell cycle, acquisition of a stem cell-like phenotype and expression of stem cell markers. This phenomenon typically shows up as a change in the form, function, and pattern of gene and protein expression, and more specifically, in CSCs. This review would highlight the main epigenetic alterations, major signaling pathways and driver mutations in which cancer stem cells, in tumors and specifically, in lung cancer, could be involved, acting as key elements in the differentiation/dedifferentiation process. This would highlight the main molecular mechanisms which need to be considered for more tailored therapies.
Proteomic study identifies Aurora-A mediated regulation of alternative splicing through multiple splicing factors
The cell cycle regulator Aurora-A kinase presents an attractive target for cancer therapies, though its inhibition is also associated with toxic side effects. To gain a more nuanced understanding of Aurora-A function, we applied shotgun proteomics to identify 407 specific protein partners, including several splicing factors. Supporting a role in alternative splicing, we found that Aurora-A localizes to nuclear speckles, the storehouse of splicing proteins. Aurora-A interacts with and phosphorylates splicing factors both in vitro and in vivo, suggesting that it regulates alternative splicing by modulating the activity of these splicing factors. Consistently, Aurora-A inhibition significantly impacts the alternative splicing of 505 genes, with RNA motif analysis revealing an enrichment for Aurora-A interacting splicing factors. Additionally, we observed a significant positive correlation between the splicing events regulated by Aurora-A and those modulated by its interacting splicing factors. An interesting example is represented by CLK1 exon 4, which appears to be regulated by Aurora-A through SRSF3. Collectively, our findings highlight a broad role of Aurora-A in the regulation of alternative splicing.
Production of site-specific antibody conjugates using metabolic glycoengineering and novel Fc glycovariants
Molecular conjugation to antibodies has emerged as a growing strategy to combine the mechanistic activities of the attached molecule with the specificity of antibodies. A variety of technologies have been applied for molecular conjugation; however, these approaches face several limitations, including disruption of antibody structure, destabilization of the antibody, and/or heterogeneous conjugation patterns. Collectively, these challenges lead to reduced yield, purity, and function of conjugated antibodies. While glycoengineering strategies have largely been applied to study protein glycosylation and manipulate cellular metabolism, these approaches also harbor great potential to enhance the production and performance of protein therapeutics. Here, we devise a novel glycoengineering workflow for the development of site-specific antibody conjugates. This approach combines metabolic glycoengineering using azido-sugar analogs with newly installed N-linked glycosylation sites in the antibody constant domain to achieve specific conjugation to the antibody via the introduced N-glycans. Our technique allows facile and efficient manufacturing of well-defined antibody conjugates without need for complex or destructive chemistries. Moreover, introduction of conjugation sites in the antibody fragment crystallizable (Fc) domain renders this approach widely applicable and target agnostic. Our platform can accommodate up to 3 conjugation sites in tandem, and the extent of conjugation can be tuned through use of different sugar analogs or production in different cell lines. We demonstrated that our platform is compatible with various use-cases, including fluorescent labeling, antibody-drug conjugation, and targeted gene delivery. Overall, this study introduces a versatile and effective yet strikingly simple approach to produce antibody conjugates for research, industrial, and medical applications.
HOW LIGANDS MODULATE THE GASTRIC H,K-ATPASE ACTIVITY AND ITS INHIBITION BY TEGOPRAZAN
The introduction of potassium-competitive acid blockers (P-CABs) has been a major innovation in gastric H,K-ATPase inhibition and many laboratories are actively engaged in the development of novel molecules within this class. This work investigates the interaction between H,K-ATPase and tegoprazan, a representative of the P-CABs group, in terms of K and H binding, through functional and structural analyses. First, by studying the H,K-ATPase activity we found a model to describe the non-Michaelis Menten kinetics through a "ping-pong" mechanism that explains a stoichiometry of 1 H, 1 K, and 1 ATP molecule, but also considering the influence of H on the ionization states of the protein. A kinetic evaluation of the inhibition of tegoprazan denotes the binding to two different intermediates states with apparent K (μM) 0.56 ± 0.04 and 2.70 ± 0.24 at pH 7.2. Molecular dynamics simulations revealed important changes in the interactions of tegoprazan with the transmembrane residues depending on whether the site contains K or not. This explains the decrease in affinity as a function of K concentration observed in the kinetic experiments. On the other hand, the structures predict that the protonation of tegoprazan is responsible for the change in its dihedral angle. The rotation of the benzimidazole ring allows the inhibitor to be positioned further into the luminal cavity, a situation compatible with the higher inhibition affinity of H,K-ATPase measured at low pH. Results presented herein will provide a basis for the rational design of novel P-CABs ligands.
Reduced S-nitrosylation of TGFβ1 elevates its binding affinity towards the receptor and promotes fibrogenic signaling in the breast
Transforming Growth Factor β (TGFβ) is a pleiotropic cytokine closely linked to tumors. Previously, we pharmacologically inhibited basal nitric oxide (NO) production in healthy mammary glands and found that this induced precancerous progression accompanied by upregulation of TGFβ and desmoplasia. In the present study, we tested whether NO directly S-nitrosylates (forms an NO-adduct at a cysteine residue) TGFβ for inhibition, whereas reduction of NO denitrosylates TGFβ for de-repression. We introduced mutations to three C-terminal cysteines of TGFβ1 which were predicted to be S-nitrosylated. We found that these mutations indeed impaired S-nitrosylation of TGFβ1 and shifted the binding affinity towards the receptor from the latent complex. Furthermore, in silico structural analyses predicted that these S-nitrosylation-defective mutations strengthen the dimerization of mature protein, whereas S-nitrosylation-mimetic mutations weaken the dimerization. Such differences in dimerization dynamics of TGFβ1 by denitrosylation/S-nitrosylation likely account for the shift of the binding affinities towards the receptor vs. latent complex. Our findings, for the first time, unravel a novel mode of TGFβ regulation based on S-nitrosylation or denitrosylation of the protein.
Impaired branched chain amino acid (BCAA) catabolism during adipocyte differentiation decreases glycolytic flux
Dysregulated branched chain amino acid (BCAA) metabolism has emerged as a key metabolic feature associated with the obese insulin resistant state, and adipose BCAA catabolism is decreased in this context. BCAA catabolism is upregulated early in adipogenesis, but the impact of suppressing this pathway on the broader metabolic functions of the resultant adipocyte remains unclear. Here, we use CRISPR/Cas9 to decrease BCKDHA in 3T3-L1 and human pre-adipocytes, and ACAD8 in 3T3-L1 pre-adipocytes to induce a deficiency in BCAA catabolism through differentiation. We characterize the transcriptional and metabolic phenotype of 3T1-L1 cells using RNAseq and C metabolic flux analysis within a network spanning glycolysis, tricarboxylic acid (TCA) metabolism, BCAA catabolism, and fatty acid synthesis. While lipid droplet accumulation is maintained in Bckdha-deficient adipocytes, they display a more fibroblast-like transcriptional signature. In contrast, Acad8 deficiency minimally impacts gene expression. Decreased glycolytic flux emerges as the most distinct metabolic feature of 3T3-L1 Bckdha-deficient cells, accompanied by a ∼40% decrease in lactate secretion, yet pyruvate oxidation and utilization for de novo lipogenesis are increased to compensate for loss of BCAA carbon. Deletion of BCKDHA in human adipocyte progenitors also led to a decrease in glucose uptake and lactate secretion, however these cells did not upregulate pyruvate utilisation and lipid droplet accumulation and expression of adipocyte differentiation markers was decreased in BCKDH knockout cells. Overall our data suggest that human adipocyte differentiation may be more sensitive to the impact of decreased BCKDH activity than 3T3-L1 cells, and that both metabolic and regulatory cross-talk exists between BCAA catabolism and glycolysis in adipocytes. Suppression of BCAA catabolism associated with metabolic syndrome may result in a metabolically compromised adipocyte.
Achieving thermostability of a phytase with resistance up to 100 °C
The development of enzymes with high-temperature resistance up to 100 °C is of significant and practical value in advancing the sustainability of industrial production. Phytase, a crucial enzyme in feed industrial applications, encounters challenges due to its limited heat resistance. Herein, we employed rational design strategies involving the introduction of disulfide bonds, free energy calculation, and B-factor analysis based on the crystal structure of phytase APPAmut4 (1.90 Å), a variant with enhanced expression levels derived from Yersinia intermedia, to improve its thermostability. Among the 144 variants experimentally verified, 29 exhibited significantly improved thermostability with higher t values at 65 °C. Further combination and superposition led to APPAmut9 with an accumulation of 5 additional pairs of disulfide bonds and 6 single-point mutation sites, leading to an enhancement in its thermostability with a t value of 256.7 min at 65 °C, which was more than 75-fold higher compared to that of APPAmut4 (3.4 min). APPAmut9 exhibited a T value of 96 °C, representing a substantial increase of 40.9 °C compared to APPAmut4. Notably, approximately 70% of enzyme activity remained intact after exposure to boiling water at 100 °C for a holding period of 5 min. Significantly, these advantageous modifications were strategically positioned away from the catalytic pocket where enzymatic reactions occur to ensure minimal compromise on catalytic efficiency between APPAmut9 (11,500 ± 1,100 /mM/s) and APPAmut4 (12,300 ± 1,600 /mM/s). This study demonstrates the feasibility of engineering phytases with resistance to boiling using rational design strategies.
O-glycosylation is essential for cell surface expression of the transcobalamin receptor CD320
CD320 is a cell surface receptor that mediates vitamin B uptake in most tissues. To date, the mechanisms that regulate CD320 expression on the cell surface are not fully understood. In this work, we studied CD320 expression in transfected human embryonic kidney (HEK) 293 and hepatoma HepG2 cells. By glycosidase and trypsin digestion, monensin and brefeldin treatment, western blotting, flow cytometry, and lectin biding, we found that CD320 underwent N- and O-glycosylation and sialylation, resulting in a ∼70-kDa band that formed a high-molecular weight complex on the cell surface. Site-directed mutagenesis altering Asn126, Asn195 and Asn213 residues, individually or together, abolished N-glycosylation in CD320 but did not block its intracellular trafficking and expression on the cell surface in HEK293 and HepG2 cells. In contrast, treatment of the cells with Ben-gal, a structural analog of GalNAc-α-1-O-Ser/Thr, inhibited O-glycosylation and cell surface expression of CD320, and decreased vitamin B uptake. Analysis of CD320 deletion mutants indicated that O-glycosylation sites in a Ser/Thr-rich region near the transmembrane domain were important for CD320 expression on the cell surface. These results reveal an important role of O-glycans, but not N-glycans, in the intracellular trafficking and cell surface expression of CD320, providing new insights into the cellular mechanisms in regulating CD320 function and vitamin B metabolism.
The CTR hydrophobic residues of Nem1 catalytic subunit are required to form a protein phosphatase complex with Spo7 to activate yeast Pah1 PA phosphatase
The Nem1-Spo7 phosphatase complex plays a key role in lipid metabolism as an activator of Pah1 phosphatidate phosphatase, which produces diacylglycerol for the synthesis of triacylglycerol and membrane phospholipids. For dephosphorylation of Pah1, the Nem1 catalytic subunit requires Spo7 for the recruitment of the protein substrate and interacts with the regulatory subunit through its conserved region (residues 251-446). In this work, we found that the Nem1 C-terminal region (CTR) (residues 414-436), which flanks the HAD-like catalytic domain (residues 251-413), contains the conserved hydrophobic residues (L414, L415, L417, L418, L421, V430, L434, and L436) that are necessary for the complex formation with Spo7. AlphaFold predicts that some CTR residues of Nem1 interact with Spo7 conserved regions, whereas some residues interact with the HAD-like domain. By site-directed mutagenesis, Nem1 variants were constructed to lack (Δ(414-446)) or substitute alanines (8A) and arginines (8R) for the hydrophobic residues. When coexpressed with Spo7, the CTR variants of Nem1 did not form a complex with Spo7. In addition, the Nem1 variants were incapable of catalyzing the dephosphorylation of Pah1 in the presence of Spo7. Moreover, the Nem1 variants expressed in nem1Δ cells did not complement the phenotypes characteristic of a defect in the Nem1-Spo7/Pah1 phosphatase cascade function (e.g., lipid synthesis, lipid droplet formation, and phospholipid biosynthetic gene expression). These findings support that Nem1 interacts with Spo7 through its CTR hydrophobic residues to form a phosphatase complex for catalytic activity and physiological functions.
The Hsc70 system maintains the synaptic SNARE protein SNAP-25 in an assembly-competent state and delays its aggregation
The complex mechanism of synaptic vesicle fusion with the plasma membrane for neurotransmitter release is initiated by the formation of the SNARE complex at the presynaptic terminal of the neuron. The SNARE complex is composed of four helices contributed by three proteins: one from syntaxin (localized at the plasma membrane), one from synaptobrevin (localized at the synaptic vesicle), and two from the intrinsically disordered and aggregation-prone SNAP-25, which is localized to the plasma membrane by virtue of palmitoylation of cysteine residues. The fusion process is tightly regulated and requires the constitutively expressed Hsp70 chaperone (Hsc70) and its J-protein co-chaperone CSPα. We hypothesize that Hsc70 and CSPα cooperate to chaperone SNAP-25, disfavoring its aggregation and keeping it in a folding state competent for SNARE complex formation. To test this hypothesis, we employed a bottom-up approach and studied the interaction between Hsc70 and CSPα with SNAP-25 in vitro. We showed that the aggregation of SNAP-25 is delayed in the presence of Hsc70 and CSPα. Using a peptide array that spans the sequence of SNAP-25, we identified three potential Hsc70-interacting sequences and designed peptides containing these sequences to test binding in solution. We characterized the interaction of SNAP-25-derived peptides with Hsc70 and CSPα using a combination of biochemical and biophysical techniques, including native-PAGE, binding affinity by fluorescence anisotropy, ATPase-activity of Hsc70, and NMR. We have identified an Hsc70 binding site within SNAP-25 that is likely to represent the site used in the cell to facilitate SNARE complex formation.
The antibacterial activity of a prophage-encoded fitness factor is neutralized by two cognate immunity proteins
The human gastrointestinal tract is a competitive environment inhabited by dense polymicrobial communities. Bacteroides, a genus of Gram-negative anaerobes, are prominent members of this ecological niche. Bacteroides spp. uses a repertoire of mechanisms to compete for resources within this environment such as the delivery of proteinaceous toxins into neighbouring competitor bacteria and the ability to consume unique metabolites available in the gut. In recent work, Bacteroides stercoris gut colonization was linked to the activity of a prophage-encoded ADP-ribosyltransferase, which was found to stimulate the release of the metabolite inosine from host epithelial cells. This fitness factor, termed Bxa, shares a similar genomic arrangement to bacterial toxins encoded within interbacterial antagonism loci. Here, we report that Bxa also possesses antibacterial ADP-ribosyltransferase activity, raising the question of how Bxa-producing bacteria resist intoxication prior to Bxa's release from cells. To this end, we identify two cognate immunity proteins, Bsi and BAH, that neutralize Bxa's antibacterial activity using distinct mechanisms. BAH acts as an enzymatic immunity protein that reverses Bxa ADP-ribosylation whereas Bsi physically interacts with Bxa and blocks its ADP-ribosylation activity. We also find that the N-terminal domain of Bxa is dispensable for toxicity and homologous domains in other bacteria are fused to a diverse array of predicted toxins found throughout the Bacteroidaceae, suggesting that Bxa belongs to a broader prophage encoded polymorphic toxin system. Overall, this work shows that Bxa is a promiscuous ADP-ribosyltransferase and that B. stercoris possesses mechanisms to protect itself from the toxic activity of this prophage encoded fitness factor.
On the specificity of the recognition of m6A-RNA by YTH reader domains
Most processes of life are the result of polyvalent interactions between macromolecules, often of heterogeneous types and sizes. Frequently, the times associated with these interactions are prohibitively long for interrogation using atomistic simulations. Here, we study the recognition of N6-methylated adenine (mA) in RNA by the reader domain YTHDC1, a prototypical, cognate pair that challenges simulations through its composition and required timescales. Simulations of RNA pentanucleotides in water reveal that the unbound state can impact (un)binding kinetics in a manner that is both model- and sequence-dependent. This is important because there are two contributions to the specificity of the recognition of the GmAC motif: from the sequence adjacent to the central adenine and from its methylation. Next, we establish a reductionist model consisting of an RNA trinucleotide binding to the isolated reader domain in high salt. An adaptive sampling protocol allows us to quantitatively study the dissociation of this complex. Through joint analysis of a data set including both the cognate and control sequences (GAC, AmAA, and AAA), we derive that both contributions to specificity, sequence and methylation, are significant and in good agreement with experimental numbers. Analysis of the kinetics suggests that flexibility in both the RNA and the YTHDC1 recognition loop leads to many low-populated unbinding pathways. This multiple-pathway mechanism might be dominant for the binding of unstructured polymers, including RNA and peptides, to proteins when their association is driven by polyvalent, electrostatic interactions.
Flexible Fluorine-Thiol Displacement Stapled Peptides with Enhanced Membrane Penetration for the Estrogen Receptor/Coactivator Interaction
Understanding how natural and engineered peptides enter cells would facilitate the elucidation of biochemical mechanisms underlying cell biology and is pivotal for developing effective intracellular targeting strategies. In this study, we demonstrate that our peptide stapling technique, fluorine-thiol displacement reaction (FTDR), can produce flexibly constrained peptides with significantly improved cellular uptake, particularly into the nucleus. This platform confers enhanced flexibility, which is further amplified by the inclusion of a D amino acid, while maintaining environment-dependent α helicity, resulting in highly permeable peptides without the need for additional cell-penetrating motifs. Targeting the ERα-coactivator interaction prevalent in estrogen receptor-positive (ER+) breast cancers, we showcased that FTDR-stapled peptides, notably SRC2-LD, achieved superior internalization, including cytoplasmic and enriched nuclear uptake, compared to peptides stapled by ring-closing metathesis (RCM). These FTDR-stapled peptides utilize different mechanisms of cellular uptake, including energy-dependent transport such as actin-mediated endocytosis and macropinocytosis. As a result, FTDR peptides exhibit enhanced anti-proliferative effects despite their slightly decreased target affinity. Our findings challenge existing perceptions of cell permeability, emphasizing the possibly incomplete understanding of the structural determinants vital for cellular uptake of peptide-like macromolecules. Notably, while α helicity and lipophilicity are positive indicators, they alone are insufficient to determine high cell permeability, as evidenced by our less helical, more flexible, and less lipophilic FTDR-stapled peptides.
Structural determinants of M2R involved in inhibition by Sigma-1R
Sigma-1 receptor (S1R) is a multimodal chaperone protein which is implicated in various pathophysiological conditions including drug addiction, Alzheimer's disease and amyotrophic lateral sclerosis (ALS). S1R interacts with various ion channels and receptors on endoplasmic reticulum or plasma membrane (PM). It has been reported that S1R colocalizes with the M2-muscarinic acetylcholine receptor (M2R) on the soma of motoneurons, although a functional interaction between these two proteins hasn't been established. Here, we investigated the regulation of M2R signalling by S1R using electrophysiological recordings of GIRK currents in HEK293T cells. We observed that S1R strongly inhibited M2R-mediated activation of GIRK1/2, but the disease mutant linked to ALS, S1R E102Q, did not. The inhibitory effect of S1R was selective for M2R and wasn't seen when S1R was co-expressed with other G coupled receptors including M4R. Chimeric and mutant receptors of M2R and M4R were generated and analysed, and this highlighted Ala401 in the transmembrane 6 domain (TM6) of M2R and Glu172 as well as Glu175 in the extracellular loop 2 region of M2R, as essential for the inhibition by S1R. Co-immunoprecipitation confirmed the physical interaction between M2R and S1R. Immunocytochemical labelling of M2R and S1R expressed in HeLa cells, HEK293T cells and cultured hippocampal neurons, showed clear PM expression of M2R throughout the cell which was decreased by coexpression with S1R but was still apparent. Taken together, our results show that S1R interacts with M2R to reduce both its PM expression and function, and this involves TM6 and the extracellular loop 2.
The molecular chaperone ALYREF promotes R-loop resolution and maintains genome stability
Unscheduled R-loops usually cause DNA damage and replication stress, and are therefore a major threat to genome stability. Several RNA processing factors, including the conserved THO complex and its associated RNA and DNA-RNA helicase UAP56, prevent R-loop accumulation in cells. Here we investigate the function of ALYREF, an RNA export adapter associated with UAP56 and the THO complex, in R-loop regulation. We demonstrate that purified ALYREF promotes UAP56-mediated R-loop dissociation in vitro, and this stimulation is dependent on its interaction with UAP56 and R-loops. Importantly, we show that ALYREF binds DNA-RNA hybrids and R-loops. Consistently, ALYREF depletion causes R-loop accumulation and R-loop-mediated genome instability in cells. We propose that ALYREF, apart from its known role in RNA metabolism and export, is a key cellular R-loop co-regulator, which binds R-loops and stimulates UAP56-driven resolution of unscheduled R-loops during transcription.
Regulation of TAR DNA binding protein 43 (TDP-43) homeostasis by cytosolic DNA accumulation
TAR DNA-binding protein 43 (TDP-43) is a DNA/RNA binding protein predominantly localized in the nucleus under physiological conditions. TDP-43 proteinopathy, characterized by cytoplasmic aggregation and nuclear loss, is associated with many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Thus it is crucial to understand the molecular mechanism regulating TDP-43 homeostasis. Here, we show that the uptake of oligodeoxynucleotides (ODNs) induces reversible TDP-43 cytoplasmic puncta formation in both neurons and glia and ODNs facilitate the liquid-liquid phase separation of TDP-43 in vitro. Importantly, persistent accumulation of DNA in the cytoplasm leads to nuclear depletion of TDP-43 and enhanced production of a short isoform of TDP-43 (sTDP-43). In addition, in response to ODN uptake, the nuclear import receptor karyopherin subunit β1 (KPNB1) is sequestered in the cytosolic TDP-43 puncta. ALS-linked Q331K mutation decreases the dynamics of cytoplasmic TDP-43 puncta and increases the levels of sTDP-43. Moreover, the TDP-43 cytoplasmic puncta are induced by DNA damage and by impaired nuclear envelope integrity due to Lamin A/C deficiency. In summary, our data support that abnormal DNA accumulation in the cytoplasm may be one of the key mechanisms leading to TDP-43 proteinopathy and provides novel insights into molecular mechanisms of ALS caused by TDP-43 mutations.
Engineered bacterial lipoate protein ligase A (lplA) restores lipoylation in cell models of lipoylation deficiency
Protein lipoylation, a vital lysine posttranslational modification (PTM), plays a crucial role in the function of key mitochondrial TCA cycle enzymatic complexes. In eukaryotes, lipoyl PTM synthesis occurs exclusively through de novo pathways, relying on lipoyl synthesis/transfer enzymes, dependent upon mitochondrial fatty acid and Fe-S cluster biosynthesis. Dysregulation in any of these pathways leads to diminished cellular lipoylation. Efficient restoration of lipoylation in lipoylation deficiency cell states using either chemical or genetic approaches has been challenging due to pathway complexity and multiple upstream regulators. To address this challenge, we explored the possibility that a bacterial lipoate protein ligase (lplA) enzyme, that can salvage free lipoic acid bypassing the dependency on de novo synthesis, could be engineered to be functional in human cells. Overexpression of the engineered lplA in lipoylation null cells restored lipoylation levels, cellular respiration, and growth in low glucose conditions. Engineered lplA restored lipoylation in all tested lipoylation null cell models, mimicking defects in mitochondrial fatty acid synthesis (MECR KO), Fe-S cluster biosynthesis (BOLA3 KO), and specific lipoylation regulating enzymes (FDX1, LIAS and LIPT1 KOs). Furthermore, we describe a patient with a homozygous c.212C>T variant LIPT1 with a previously uncharacterized syndromic congenital sideroblastic anemia. K562 erythroleukemia cells engineered to harbor this missense LIPT1 allele recapitulate the lipoylation deficient phenotype and exhibit impaired proliferation in low glucose that is completely restored by engineered lplA. This synthetic approach offers a potential therapeutic strategy for treating lipoylation disorders.
Biophysical characterization of the dystrophin C-terminal domain: Dystrophin interacts differentially with dystrobrevin isoforms
Duchenne muscular dystrophy (DMD) gene encodes dystrophin, a large multi-domain protein. Its non-functionality leads to dystrophinopathies like DMD and Becker muscular dystrophy (BMD), for which no cure is yet available. A few therapies targeted towards specific mutations can extend the lifespan of patients, although with limited efficacy and high costs, emphasizing the need for more general treatments. Dystrophin's complex structure with poorly understood domains and the presence of multiple isoforms with varied expression patterns in different tissues pose challenges in therapeutic development. The C-terminal (CT) domain of dystrophin is less understood in terms of its structure-function, although it has been shown to perform important functional roles by interacting with another cytosolic protein, dystrobrevin. Dystrophin and dystrobrevin stabilize the sarcolemma membrane by forming a multi-protein complex called dystrophin-associated glycoprotein complex (DAGC) that is destabilized in DMD. Dystrobrevin has two major isoforms, alpha and beta, with tissue-specific expression patterns. Here, we characterize the CT domain of dystrophin and its interactions with the two dystrobrevin isoforms. We show that the CT domain is non-globular and shows reversible urea denaturation as well as thermal denaturation. It interacts with dystrobrevin isoforms differentially, with differences in binding affinity and the mode of interaction. We further show that the amino acid differences in the C-terminal region of dystrobrevin isoforms contribute to these differences. These results have implications for the stability of DAGC in different tissues and explain the differing symptoms associated with DMD patients affecting organs beyond the skeletal muscles.
STALL-seq: mRNA-display selection of bacterial and eukaryotic translational arrest sequences from large random-sequence libraries
Translational arrest is a phenomenon wherein a temporary pause or slowing of the translation elongation reaction occurs due to the interaction between ribosome and nascent peptide. Recent studies have revealed that translational arrest peptides are involved in intracellular protein homeostasis regulatory functions, such as gene expression regulation at the translational level and regulation of cotranslational protein folding. Herein, we established a method for the large-scale in vitro selection of translational arrest peptides from DNA libraries by combining a modified mRNA display method and deep sequencing. We performed in vitro selection of translational arrest sequences from random-sequence libraries via mRNA display based on the E. coli PURE system or wheat germ extract. Following several rounds of affinity selection, we obtained various candidate sequences that were not similar to known arrest peptides and subsequently confirmed their ribosome stalling activity by peptidyl-tRNA detection and toeprinting assay. Following the site-directed mutagenesis of the selected sequences, these clones were found to contain novel arrest peptide motifs. This method, termed as STALL-seq (Selection of Translational Arrest sequences from Large Library sequencing), could be useful for the large-scale investigation of translational arrest sequences acting on both bacterial and eukaryotic ribosomes and could help discover novel intracellular regulatory mechanisms.
The acetylglucosaminyltransferase GnT-Ⅲ regulates erythroid differentiation through ERK/MAPK signaling
Differentiation therapy is an alternative strategy used in treating chronic myelogenous leukemia (CML) to induce the differentiation of immature or cancerous cells towards mature cells and inhibit tumor cell proliferation. We aimed to explore N-glycans' roles in erythroid differentiation using the sodium butyrate (NaBu)-induced model of K562 cells (WT/NaBu cells). Here, using lectin blot, flow cytometry, real-time PCR, and mass spectrometry analyses, we demonstrated that the mRNA levels of N-acetylglucosaminyltransferase Ⅲ (GnT-Ⅲ encoded by the MGAT3 gene) and its product (bisected N-glycans) were significantly increased during erythroid differentiation. To address the importance of GnT-Ⅲ in this progress, we established a stable MGAT3 knockout (KO) K562 cell line using the CRISPR/Cas9 technology. Compared to WT/NaBu cells, MGAT3 KO significantly impeded the progression of erythroid differentiation, as shown in decreased cell color and levels of erythroid markers, glycophorin A (CD235a), and β-globin. Consistently, MGAT3 KO mitigated the inhibitory impact of NaBu on cell proliferation. During induction, MGAT3 KO suppressed the cellular phosphorylated tyrosine and phospho-ERK1/2 levels. Inhibition of the ERK/MAPK signaling pathway using U0126 blocked erythroid differentiation while concurrently suppressing the expression levels of MGAT3 and bisected N-glycans. Furthermore, the lack of bisecting GlcNAc modification on c-Kit and transferrin receptor 1 (CD71) suppressed cellular signaling and accelerated the degradation of the CD71 protein, respectively. Our study highlights the critical role of MGAT3 in regulating erythroid differentiation associated with the ERK/MAPK signaling pathway, which may shed light on identifying new differentiation therapy in chronic myelogenous leukemia.