INVERTEBRATE SYSTEMATICS

A molecular assessment of species boundaries and relationships in the Australian brine shrimp (Anostraca: Parartemiidae)
Islam MA, Chaplin J, Lawrie AD, Rahman M and Pinder A
Australian salt lakes contain a diverse range of endemic invertebrates. The brine shrimp Parartemia is among the most speciose and salt-tolerant of these invertebrates. The morphotaxonomy of Parartemia is well established but there has only been limited molecular assessment of the phylogenetic relationships and boundaries of the morphospecies. We used multiple genetic markers (nuclear 28S and mitochondrial 16S and COI ) and tree-building methods (Bayesian inference and maximum likelihood) to investigate the phylogeny of Parartemia . We also used species delimitation methods to test the validity of morphological species designations. The data set included all but 2 of the 18 described Parartemia morphospecies, collected from a total of 93 sites from across southern Australia plus some sequences from GenBank. The results identified large amounts of molecular divergence (e.g. COI P- values of up to 25.23%), some groups of closely related species (which also usually shared some morphological similarities) and some distinctive species, although the relationships among divergent lineages were generally not well resolved. The most conservative set of results from the species delimitation analyses suggests that the morphotaxonomy is largely accurate, although many morphospecies comprised divergent genetic lineages separated by COI P- values of up to 17.02%. Two putative new morphospecies, three cryptic species and one synonymy were identified. Our findings improve the knowledge of Parartemia taxonomy and will facilitate the development of future studies and conservation of this taxon.
Genetic barcodes for species identification and phylogenetic estimation in ghost spiders (Araneae: Anyphaenidae: Amaurobioidinae)
Barone ML, Wilson JD, Zapata L, Soto EM, Haddad CR, Grismado C, Izquierdo M, Arias E, Pizarro-Araya J, Briones R, Barriga JE, Peralta L and Ramírez MJ
The identification of spider species presents many challenges, since in most cases the characters used are from genital structures that are only fully developed in the adult stage, hence the identification of immatures is most often not possible. Additionally, these structures usually also present some intra-specific variability, which in some cases makes the identification of closely related species difficult. The genetic barcode technique (DNA barcodes), based on sequencing of the mitochondrial marker cytochrome c oxidase subunit I (COI ), has proven a useful, complementary tool to overcome these limitations. In this work, the contribution of DNA barcoding to the taxonomy of the subfamily Amaurobioidinae is explored using the refined single linkage analysis (RESL) algorithm for the delimitation of operational taxonomic units (OTUs), in comparison with the assemble species by automatic partitioning (ASAP) algorithm, and presented in conjunction with an updated molecular phylogenetic analysis of three other markers (28S rRNA, 16S rRNA, Histone H3 ), in addition to COI . Of a total of 97 included species identified by morphology, 82 species were concordant with the operational taxonomic units obtained from RESL, representing an 85% correspondence between the two methods. Similar results were obtained using the ASAP algorithm. Previous observations of morphological variation within the same species are supported, and this technique provides new information on genetic structure and potentially cryptic species. Most of the discrepancies between DNA barcoding and morphological identification are explained by low geographic sampling or by divergent or geographically structured lineages. After the addition of many specimens with only COI data, the multi-marker phylogenetic analysis is consistent with previous results and the support is improved. The markers COI , closely followed by 28S , are the most phylogenetically informative. We conclude that the barcode DNA technique is a valuable source of data for the delimitation of species of Amaurobioidinae, in conjunction with morphological and geographic data, and it is also useful for the detection of cases that require a more detailed and meticulous study.
Systematics of cybaeid spiders endemic to the Japanese Archipelago, and their historical biogeographic implications (Araneae: Cybaeidae)
Sugawara Y, Ihara Y, Koike N, Seo HY, Prozorova LA, Zhang ZS and Nakano T
The epigean and subterranean spiders of the genus Cybaeus L. Koch, 1868 are distributed in the Holarctic, and are highly diversified in western North America and Japan. More than 100 species have been described from the Japanese Archipelago and several species assemblages have also been recognised among the Japanese Cybaeus based on their morphological similarities. However, their phylogenetic backbone remains unclear. Moreover, genus-level classification of several of the Japanese species appear to be questionable. In this study we performed extensive molecular analyses of the family Cybaeidae in East Asia, mainly the Japanese Archipelago, to clarify their fundamental phylogenetic relationships. We also conducted a divergence time estimation to provide insights into their historical biogeography and evolutionary history. Our divergence dating results indicate that the diversification of the major lineages of the East Asian cybaeid spiders might be related to the opening of the Sea of Japan c .20million years ago. On the basis of the morphological evaluation and obtained phylogenies, some East Asian species formerly placed in Cybaeus are transferred to the cybaeid genera Allocybaeina Bennett, 2020, Sincybaeus Wang & Zhang, 2022 and Cybaeina Chamberlin & Ivie, 1932, i.e. Allocybaeina petegarina (Yaginuma, 1972), comb. nov., Sincybaeus monticola (Kobayashi, 2006), comb. nov., Sincybaeus rarispinosus (Yaginuma, 1970), comb. nov., Sincybaeus yoshiakii (Yaginuma, 1968), comb. nov., and Cybaeina whanseunensis (Paik & Namkung, 1967), comb. nov. Our results clarify the genus-level richness of cybaeids in the Japanese Archipelago for the first time, and reveal the fine-scale phylogenetic relationships of Cybaeus species endemic to the Japanese Archipelago and adjacent regions. ZooBank: urn:lsid:zoobank.org:pub:AF2A3C0E-7F0F-4253-85BA-D995A075F00D.
DNA but not always morphology help to recognise monophyletic genera within '' terrestrial water scavenger beetles: a case study of gen. nov. (Coleoptera: Hydrophilidae)
Mai Z, Wang L, Ryndevich SK, Fikácek M, Arriaga-Varela E and Jia F
DNA-based studies have revealed that the terrestrial water scavenger beetle genus Cercyon Leach, 1817 (Coleoptera: Hydrophilidae: Sphaeridiinae: Megasternini) is polyphyletic, grouping similarly looking but unrelated species that were not assigned to other genera due to the absence of unusual morphological characters. In this study, we analyse the morphology, DNA data and species diversity of one of the Asian clades of 'Cercyon ' to test whether a natural, phylogeny-based generic classification can be established. We add DNA data (five nuclear and three mitochondrial fragments) for additional species and specimens of the clade to test its monophyly and reveal phylogenetic relationships among species. We perform a detailed morphological study of all species, including SEM micrographs, to reveal synapomorphies of the DNA-based clades. We demonstrate that the lineage, described here as Asiacyon Mai, Jia, Ryndevich & Fikáček, gen. nov., is strongly supported by DNA data, has limited distribution (eastern Asia), and its species share similar biology (inhabiting fresh or decaying plant tissues), though it can be only diagnosed by a combination of plesiomorphic characters. A detailed treatment is provided for the Chinese species, including species diagnoses, illustrations of habitus and male genitalia, (re)descriptions and a key to species. A total of 14 Chinese species are recognised, of which 11 are described as new: Asiacyon pax sp. nov. (Guangdong, Hong Kong, Hunan), A. pseudincretus sp. nov. (Anhui, Jiangxi, Taiwan, Zhejiang), A. vicincretus sp. nov. (Guangdong, Guangxi), A. zhengyucheni sp. nov. (Yunnan), A. huilanae sp. nov. (Yunnan), A. cornipenis sp. nov. (Yunnan), A. belousovi sp. nov. (Yunnan), A. liangchengi sp. nov. (Yunnan), A. paraequalis sp. nov. (Yunnan), A. pengzhongi sp. nov. (Hunan) and A. xiuzhenae sp. nov. (Hainan, Yunnan). Three Chinese species previously classified in Cercyon are transferred to Asiacyon : A. incretus (d'Orchymont, 1941), comb. nov., A. primoricus (Ryndevich & Prokin, 2017), comb. nov. (newly recorded from China) and A. indicus (d'Orchymont, 1926), comb. nov. (newly recorded from China and Laos). Additionally, seven Asian species previously classified in Cercyon are transferred to Asiacyon based on their external morphology, but not studied in detail: A. aequalis (Sharp, 1884), comb. nov., A. conjiciens (Walker, 1858), comb. nov., A. dilutus (Régimbart, 1903), comb. nov., A. placidus (Sharp, 1884), comb. nov., A. pseudodilutus (Satô, 1979), comb. nov., A. retius (Ryndevich & Prokin, 2017), comb. nov., and A. rubicundus (Sharp, 1884), comb. nov. In total, the genus now comprises 21 named species and several undescribed species from India, Myanmar and Indonesia. ZooBank: urn:lsid:zoobank.org:pub:E3C949A0-34E4-46EF-BA6A-2CD048D583B2.
Integrative taxonomy of pollen beetles (Coleoptera: Nitidulidae: Meligethinae), with implications on the systematics of the genus (Lamiaceae)
Liu M, Li Q, Gardini P, Audisio P and Sabatelli S
In highly specialised phytophagous insects, important insights on phylogeny of the involved insect group can be often inferred from the evolutionary history of their host plants, and vice-versa, as in the case for a new, peculiar species of pollen beetles, recently discovered in Central China (Hubei Province). This new species is described herein as Teucriogethes huangae Liu & Audisio, sp. nov., and information on its ecology and systematic position is provided. The new species, associated as larvae with a strongly isolated member of the genus Teucrium L. (Lamiaceae), T. ornatum Hemsl., exhibiting a problematic taxonomic position, represents in turn an isolated and morphologically rather aberrant taxon in its lineage, probably the largest in size (2.2-2.8mm), and the first endemic representative of its genus in the whole Eastern Palaearctic. An updating of the taxonomic assessment of members of Teucriogethes and on possible evolutionary relationships with their larval host plants, based on an integrative taxonomy approach, is finally presented. A key to identification of all known species is also introduced. ZooBank: urn:lsid:zoobank.org:pub:E349044B-29A5-416C-85CA-56143C7A29BE.
Molecular phylogeny of (Platyhelminthes: Polycladida), with description of a new species from the Pacific coasts of Panama
Tsuyuki A, Norenburg J, Leasi F and Curini-Galletti M
Mesopsammic polyclad members in the family Boniniidae have attracted attention in terms of their evolutionary shifts of microhabitat and their unique morphology such as a pair of pointed tentacles extending from the anterolateral margins and prostatoid organs harbouring stylets. Here, we establish a new species of this family as Boninia panamensis sp. nov. from the Pacific coasts of Panama, based on its morphological characteristics of (i) four cerebral and 61-80 marginal eyespots, (ii) two prostatoid organs located anterior and posterior to the penis papilla, and (iii) two uterine canals departing from the anterior part of the Lang's vesicle. We also report Boninia cf. uru from Hawai'i, USA, based on its morphological identity with B. uru from Okinawa, Japan, along with their genetic distances for the partial cytochrome c oxidase subunit I (COI ) sequences, which were beyond the range of intraspecific differences observed in congeners in this study. Boninia oaxaquensis is also reported from Panama as a new locality for the species. Involving the above-mentioned three species sequenced herein, we reconstructed molecular phylogenetic trees of Boninia based on the four gene markers (18S rDNA, 28S rDNA, 16S rDNA and COI ). Our phylogenetic trees indicated the synapomorphy within the genus Boninia of the small numbers of stylets (2-4) and the connection route of the uterine canals to the Lang's vesicle. The results also showed a characteristic distribution pattern in which pairs of species in distinct lineages occurred sympatrically with different microhabitats, as observed in Boninia uru and Boninia yambarensis in Okinawa and B. panamensis sp. nov. and B. oaxaquensis in Panama. In addition, we discuss possible speciation pathways in this genus based on the tree topology. ZooBank: urn:lsid:zoobank.org:pub:D414BACD-C14A-4B34-8AF9-7ACBA28F46D0.
Systematics of Apatelodidae Neumoegen & Dyar, 1894 (Lepidoptera: Bombycoidea) based on molecular and morphological data
Orlandin E, Piovesan M and Carneiro E
Apatelodidae is a family of New World bombycoids distributed mainly in the Neotropical region, with 14 genera, 222 valid species and 8 subspecies. These moths are medium-sized with a wingspan ranging from 2 to 8cm, generally greyish, straw-yellow or reddish-brown, with darker spots and lines on the dorsal side of the wings. We combine adult morphology and molecular data to test, under a probabilistic framework, the monophyly of apatelodid genera and the placement of Tamphana (Bombycidae). We sampled the type species of 12 of the 14 valid genera of Apatelodidae, including the type species of synonymised genera. We sampled ~75% of the species from all valid genera in the family and outgroups from Bombycidae, Brahmaeidae, Eupterotidae and Phiditiidae, totalling 195 terminals. Examination of the specimens resulted in a matrix of 138 morphological characters (116 from male; 22 from female) from the head (7 from male; 1 from female), thorax (37 from male; 4 from female), abdomen (5 from male) and genitalia (66 from male; 17 from female). For the molecular analyses, we used four genes: DDC (647bp) for 14% of terminals; CAD (2486bp) for 23% of terminals, Wgl (409bp) for 38% of terminals and COI (658bp) for 75% of terminals. Species of Tamphana were recovered in Apatelodidae as two independent clades. The genera Arotros , Crastolliana , Drepatelodes , Pantelodes , and Prothysana were recovered as monophyletic. The remaining apatelodid genera were polyphyletic. We propose a new genus-level classification: Tamphana is transferred to Apatelodidae; 16 new genera are proposed: Aymara gen. nov. , Campesina gen. nov. , Caribas gen. nov. , Cecile gen. nov. , Kaweskar gen. nov. , Lempira gen. nov. , Misak gen. nov. , Mocambo gen. nov. , Nhanderu gen. nov. , Peabiru gen. nov. , Raoni gen. nov. , Tapuia gen. nov. , Tibira gen. nov. , Tupac gen. nov. , Tuyvae gen. nov. and Zapata gen. nov. Two new species are described: Mocambo lauracensis sp. nov. , and Nhanderu takua sp. nov. We revalidate the genus Hygrochroa stat. rev. and three species: Carnotena perlineata stat. rev., Tupac bombycina stat. rev., comb. nov. and Zanola vivax stat. rev. Overall, we propose 82 new generic combinations, synonymise 16 species, and restore the status of 3 species: Apatelodes floramia stat. rest. , Carnotena rectilinea comb. nov. , stat. rest. and Ephoria nubilosa stat. rest. Additionally, we summarise data on the natural history and distribution of each Apatelodidae species. ZooBank: urn:lsid:zoobank.org:pub:254AA924-30B3-48A8-AB15-CCF2745C3B8E.
A new genus of bamboo coral (Octocorallia: Scleralcyonacea: Keratoisididae) from the Whittard Canyon, Ireland, Northeast Atlantic
Morrissey D, Allcock AL and Quattrini AM
Deep-sea corals are rarely identified to species due to a lack of taxonomic expertise and paucity of sampling. Herein we describe a new genus from the family Keratoisididae collected from the Northeast Atlantic. Using both nuclear (2010 conserved element loci) and complete mitogenome phylogenies, we found this genus to be closely related to the genera Dokidisis and Jasonisis . In the nuclear phylogeny, each genus occupied a distinct well-supported clade. All three genera lack thorned- or double-star sclerites in the pharynx; instead they have flattened rods, a potential unifying feature of the keratoisidid group J3 of Watling et al . (2022) . The newly described genus Explorisis gen. nov. has a unique sclerome including spindles and tapered rods that differentiates it from its sister genera. Explorisis katharina sp. nov. is characterised by volcano to cylindrical shaped polyps, striated rods and spindles in the polyp body, and elongated flattened rods in the coenenchyme, whereas Explorisis poppyae sp. nov. has heavily granulated spindles and rods in both the polyp body and coenenchyme. Genetic variation within the mitogenomes across both Explorisis gen. nov. species is limited with mutations in just 3 of 14 protein coding regions. ZooBank: urn:lsid:zoobank.org:pub:141BD76E-8C83-43BE-8E1E-B8C53CD7CEF7.
Ant mimicry in Australian plant bugs: a new genus (Heteroptera: Miridae: Austromirini: gen. nov.), eight new species, myrmecomorphic traits, host plants and distribution
McMah A and Cassis G
The Australian plant bug tribe Austromirini consists of ant-mimetic taxa which are poorly known, with no information of their phylogenetic relationships and ant-mimetic traits. In this study, we examined nearly 1000 ingroup specimens and developed a comprehensive morphological dataset comprising 37 characters, which was analysed both weighted and unweighted, using 'Tree analysis using New Technology' (TNT ) software. A single minimal length phylogenetic tree was found, comprising a monophyletic group of ant-mimetic taxa, that included Myrmecoroides rufescens , Myrmecoridea sp., Kirkaldyella spp. and eight species of a new genus, Carenotus gen. nov. The myrmecomorphic traits of Carenotus and allied ant-mimetic taxa are documented and analysed phylogenetically, in conjunction with genitalic characters. Carenotus is defined by the myrmecomorphic colour patterning of the abdominal venter, whereas the ingroup species relationships are supported by genitalic characters alone. Carenotus is described as new with eight included species as follows: C. arltunga sp. nov., C. louthensis sp. nov., C. luritja sp. nov., C. pullabooka sp. nov., C. scaevolaphilus sp. nov., C. schwartzi sp. nov., C. tanami sp. nov. and C. yuendumu sp. nov. Host plant associations are also documented, ranging from host plant specificity and genus-group preferences to host plant generalism. The distribution of Carenotus species is documented with reference to phytogeographic subregions, with all species being semi-arid and arid dwelling. The male and female genitalia of Kirkaldyella pilosa and K. rugosa are described and illustrated, for comparative and phylogenetic purposes. This research expands our knowledge on the plant bug tribe Austromirini and has broader implications for myrmecomorphic research in the suborder Heteroptera. ZooBank: urn:lsid:zoobank.org:pub:2FF9BE23-38A6-42B4-8488-74F216D8237F.
UCE-based phylogenomics of the lepidopteran endoparasitoid wasp subfamily Rogadinae (Hymenoptera: Braconidae) unveils a new Neotropical tribe
Shimbori EM, Castañeda-Osorio R, Jasso-Martínez JM, Penteado-Dias AM, Gadelha SS, Brady SG, Quicke DLJ, Kula RR and Zaldívar-Riverón A
During the past two decades, the phylogenetic relationships and higher-level classification of the subfamily Rogadinae have received relevant contributions based on Sanger, mitogenome and genome-wide nuclear DNA sequence data. These studies have helped to update the circumscription and tribal classification of this subfamily, with six tribes currently recognised (Aleiodini, Betylobraconini, Clinocentrini, Rogadini, Stiropiini and Yeliconini). The tribal relationships within Rogadinae, however, are yet to be fully resolved, including the status of tribe Facitorini, previously regarded as betylobraconine, with respect to the members of Yeliconini. We conducted a phylogenomic analysis among the tribes of Rogadinae based on genomic ultraconserved element (UCE) data and extensive taxon sampling including three undescribed genera of uncertain tribal placement. Our almost fully supported estimate of phylogeny confirmed the basal position of Rogadini within the subfamily and a Facitorini clade (Yeliconini+Aleiodini) that led us to propose the former group as a valid rogadine tribe (Facitorini stat. res.). Stiropiini, however, was recovered for the first time as sister to the remaining rogadine tribes except Rogadini, and Clinocentrini as sister to a clade with Betylobraconini+the three undescribed genera. The relationships recovered and morphological examination of the material included led us to place the latter three new genera and recently described genus Gondwanocentrus within a new rogadine tribe, Gondwanocentrini Shimbori & Zaldívar-Riverón trib. nov. We described these genera (Ghibli Shimbori & Zaldívar-Riverón gen. nov., Racionais Shimbori & Zaldívar-Riverón gen. nov. and Soraya Shimbori gen. nov.) with two or three new species each (G. miyazakii Shimbori & Zaldívar-Riverón sp. nov., G. totoro Shimbori & Zaldívar-Riverón sp. nov., R. brunus Shimbori & Zaldívar-Riverón sp. nov., R. kaelejay Shimbori & Zaldívar-Riverón sp. nov., R. superstes Shimbori & Zaldívar-Riverón sp. nov., S. alencarae Shimbori sp. nov. and S. venus Shimbori & Zaldívar-Riverón sp. nov.). A new species of Facitorini, Jannya pasargadae Gadelha & Shimbori sp. nov., is also described. Our newly proposed classification expands the number of tribes and genera within Rogadinae to 8 and 66 respectively. ZooBank: urn:lsid:zoobank.org:pub:51951C78-069A-4D8B-B5F0-7EBD4D9D21CE.
Isopods on isopods: integrative taxonomy of Cabiropidae (Isopoda: Epicaridea: Cryptoniscoidea) parasitic on anthuroid isopods, with descriptions of a new genus and three new species from Japan
Shiraki S and Kakui K
Species in the parasitic isopod family Cabiropidae are known to utilise various isopods as hosts but there are currently no records of members parasitising anthuroid hosts. We describe Anthuroniscus gen. nov. for three new cabiropid species, Anthuroniscus shimomurai sp. nov. , Anthuroniscus dentatus sp. nov. and Anthuroniscus latus sp. nov. , all of which are parasitic on anthuroid isopods. Anthuroniscus gen. nov. differs from the other 14 cabiropid genera and 10 genera treated as family incertae sedis in females having an elongate, dorsally compressed, posteriorly tapering body with six pairs of lateral bulges; and cryptoniscus larvae in the following combination of characters: (1) eyes lacking, (2) antennular article 1 with eight teeth on the posterior margin, (3) uropodal exopod and endopod rectangular rather than tapering, and endopod longer than exopod, and (4) pleotelson trapezoidal, 2× as wide as long. Anthuroniscus shimomurai sp. nov. was parasitic on Mesanthura sp. from Kaichu Doro, Uruma, Okinawa, south-western Japan; A. dentatus sp. nov. on Accalathura sp. from Irabu Island, Miyako Islands, Okinawa; and A. latus sp. nov. on Colanthura nigra from Kanagawa, central Japan. In pairwise comparisons, the three new species showed p -distances of 0.6-1.3% for the 18S rRNA gene (1440 positions); and A. shimomurai sp. nov. and A. latus sp. nov. showed a p -distance of 36.2% for the 16S rRNA gene (412 positions). In an 18S -based maximum-likelihood tree, an Anthuroniscus gen. nov. clade was the sister group to Cryptoniscoidea sp., parasitic on an ostracod species. This is the first study reporting Cabiropidae from Japan and anthuroids as hosts for Cryptoniscoidea. ZooBank: urn:lsid:zoobank.org:pub:2EE042E2-AE48-4B87-B495-8436462146B9.
Panmixia and local endemism: a revision of the species complex with a description of new species
Grishina DY, Schepetov DM, Antokhina TI, Malaquias MAE, Valdés Á and Ekimova IA
Species of the genus Eubranchus Forbes, 1838 (Mollusca: Gastropoda: Nudibranchia) are common faunistic elements of boreal benthic ecosystems, associated with hydroid communities. Recent studies have suggested that the widely distributed trans-Arctic E. rupium (Møller, 1842) constitutes a complex of at least three candidate species, but the detailed taxonomy of the complex remains unresolved. The purpose of the present paper is to conduct an integrative taxonomic study including molecular genetic methods (a phylogenetic analysis using COI , 16S rRNA and histone H3 with application of species delimitation methods) and morphological study (light and scanning electron microscopy) of E. rupium and closely related species. The specific aims of this study were to establish the species boundaries, morphological variability, and the phylogeographic structure within this group. The phylogeographic analysis included a TCS -based network analysis, an analysis of molecular variance (AMOVA), divergence time estimations, and ancestral area reconstructions. We demonstrate that specimens initially identified as E. rupium included three distinctive species: the nominal E. rupium with an amphiboreal range, the new species Eubranchus novik sp. nov. from the Sea of Japan, for which a taxonomic description is provided in this paper, and Eubranchus sp. from the northern Kuril Islands, which requires the collection and study of additional material for formal description. Our results confirm the amphiboreal distribution of E. rupium , as no geographic structure was found across Pacific, Arctic and Atlantic populations, and the results of the AMOVA analysis showed no differences between groups of samples from different geographic regions. The divergence of the 'Eubrancus rupium species complex' is estimated from the late Miocene or the Miocene-Pliocene boundary to the late Pliocene. It is hypothesised that the most probable ancestral region for the Eubranchus rupium species complex is the north-western Pacific, and the subsequent speciation likely occurred due to dispersal followed by allopatric speciation. ZooBank: urn:lsid:zoobank.org:pub:228E0C46-0BF7-4DDD-9C00-67B50E298D65.
Taxonomic revision of two species in the genus Simpson, 1900 (Bivalvia: Unionidae: Gonideinae), with description of a new species
Wu R, Liu L, Zhang L, Bogan AE, Niu G, Jin D, Wu X and Liu X
Accurate identification and precise classification of freshwater mussel species that are among the most threatened freshwater taxa in the world, play a crucial role in informing conservation and management efforts for these organisms. However, due to the variability in shell morphology, relying solely on shell characteristics for species taxonomy poses significant challenges, thereby impeding effective conservation planning and management. The freshwater mussel genus Ptychorhynchus Simpson, 1900 is one such group in need of study. We integrate molecular phylogeny, shell morphology and soft-body anatomy to examine the classification of Ptychorhynchus denserugata (Haas, 1910) and Ptychorhynchus resupinatus (von Martens, 1902). The COI barcoding data support the clustering of P. denserugata and Nodularia douglasiae within a single clade, and P. denserugata shares the diagnostic feature of the genus Nodularia , i.e. knobs or bumps on the inner mantle surface in the excurrent aperture. Therefore, by integrating molecular data and anatomical characteristics, we confirm that the nominal species P. denserugata syn. nov. is a new synonym for N. douglasiae . The multi-locus (COI + ND1 + 16S rRNA + 18S rRNA + 28S rRNA ) phylogeny and mitochondrial phylogenomics support the transfer of P. resupinatus from Ptychorhynchus to the newly elevated genus Cosmopseudodon stat. rev., as Cosmopseudodon resupinatus stat. rev. that is still considered the designated type species. We also describe a new species based on integrative taxonomy, i.e. Cosmopseudodon wenshanensis sp. nov. The comprehensive understanding of the taxonomy and diversity of the revised Cosmopseudodon species, and shell heteromorphism of N. douglasiae (=P. denserugata syn. nov.), will serve as a crucial foundation for further scientific assessment and conservation strategies pertaining to these taxa. ZooBank: urn:lsid:zoobank.org:pub:E48968B1-DF0F-42AD-8F31-B8C95F23CE57.
Molecular phylogenetic position and description of a new genus and species of freshwater Chaetonotidae (Gastrotricha: Chaetonotida: Paucitubulatina), and the annotation of its mitochondrial genome
Gammuto L, Serra V, Petroni G and Todaro MA
Chaetonotidae is the most diversified family of the entire phylum Gastrotricha; it comprises ~430 species distributed across 16 genera. The current classification, established mainly on morphological traits, has been challenged in recent years by phylogenetic studies, indicating that the cuticular ornamentations used to discriminate among species may be misleading when used to identify groupings, which has been the practice until now. Therefore, a consensus is developing toward implementing novel approaches to better define species identity and affiliation at a higher taxonomic ranking. Using an integrative morphological and molecular approach, including annotation of the mitogenome, we report on some freshwater gastrotrichs characterised by a mixture of two types of cuticular scales diagnostic of the genera Aspidiophorus and Heterolepidoderma . Our specimens' overall anatomical characteristics find no correspondence in the taxa of these two genera, calling for their affiliation to a new species. Phylogenetic analyses based on the sequence of the ribosomal RNA genes of 96 taxa consistently found the new species unrelated to Aspidiophorus or Heterolepidoderma but allied with Chaetonotus aff. subtilis, as a subset of a larger clade, including mostly planktonic species. Morphological uniqueness and position along the non-monophyletic Chaetonotidae branch advocate erecting a new genus to accommodate the current specimens; consequently, the name Litigonotus ghinii gen. nov., sp. nov. is proposed. The complete mitochondrial genome of the new taxon resulted in a single circular molecule 14,384 bp long, including 13 protein-coding genes, 17 tRNA genes and 2 rRNAs genes, showing a perfect synteny and collinearity with the only other gastrotrich mitogenome available, a possible hint of a high level of conservation in the mitochondria of Chaetonotidae. ZooBank: urn:lsid:zoobank.org:pub:9803F659-306F-4EC3-A73B-8C704069F24A.
Image-based recognition of parasitoid wasps using advanced neural networks
Shirali H, Hübner J, Both R, Raupach M, Reischl M, Schmidt S and Pylatiuk C
Hymenoptera has some of the highest diversity and number of individuals among insects. Many of these species potentially play key roles as food sources, pest controllers and pollinators. However, little is known about the diversity and biology and ~80% of the species have not yet been described. Classical taxonomy based on morphology is a rather slow process but DNA barcoding has already brought considerable progress in identification. Innovative methods such as image-based identification and automation can further speed up the process. We present a proof of concept for image data recognition of a parasitic wasp family, the Diapriidae (Hymenoptera), obtained as part of the GBOL III project. These tiny (1.2-4.5mm) wasps were photographed and identified using DNA barcoding to provide a solid ground truth for training a neural network. Taxonomic identification was used down to the genus level. Subsequently, three different neural network architectures were trained, evaluated and optimised. As a result, 11 different genera of diaprids and one mixed group of 'other Hymenoptera' can be classified with an average accuracy of 96%. Additionally, the sex of the specimen can be classified automatically with an accuracy of >97%.
Integrative taxonomy in (Annelida, Syllidae): from a unique cosmopolitan species to a complex of pseudocryptic species
Del Olmo I, Roma-Cavagliani J, Martín-Hervás MDR, Langeneck J, Cervera JL and Álvarez-Campos P
Syllis prolifera (Syllidae, Syllinae) is an abundant species of marine annelids commonly found in warm to temperate waters worldwide. Although morphological variability occurs among populations, S. prolifera has long been considered a cosmopolitan species, widely distributed in coastal environments, including acidified and polluted areas. However, the increasing number of cases of cryptic and pseudocryptic speciation in several polychaete families in recent years has led us to question whether S. prolifera represents a single globally distributed taxon or is a species complex. To address this question, we conducted an integrative study, combining morphological, ecological and molecular data of 52 S. prolifera specimens collected in different localities across the western Mediterranean Sea and the Gulf of Cadiz. Our phylogenetic and species delimitation analyses that included two mitochondrial DNA markers (COI and 16S rRNA ) were congruent in not considering S. prolifera a unique entity. Five distinct lineages that can also be recognised by certain morphological and ecological traits were identified from these analyses instead. Overall, our study does not support the homogeneity of S. prolifera across the Mediterranean Sea, providing a new example of pseudocrypticism in marine invertebrates.
The South American genus (Coleoptera: Carabidae: Cnemalobini): phylogeny and biogeographic analysis with the description of four new species from extra-Andean Patagonian mountains
Griotti M, Olave M, Cornejo P, Miras D and Roig-Juñent S
The carabid beetle Cnemalobus Guérin-Ménéville, 1838 inhabits high- and lowland grasslands of southern South America. The highest diversity is found in the Patagonian Steppe, where distribution patterns are associated with latitude and elevation. Northern Patagonia, a large volcanic region with a complex geoclimatic history, exhibits elevated grades of endemism. However, a great deal remains unknown regarding diversification and biogeographical patterns for most of the endemic groups. We describe new Cnemalobus species restricted to isolated volcanoes from these extra-Andean mountain systems. We assess the phylogenetic relationships by updating the phylogeny of the genus and conduct a Bayesian binary Markov chain-Monte Carlo (MCMC) analysis on the resulting phylogenetic tree to discuss the biogeographical distribution patterns. We also provide a taxonomic key to all currently known species of Cnemalobus from the Patagonian Steppe. Our phylogenetic analysis supports the monophyly of the new species Cnemalobus tromen sp. nov., Cnemalobus silviae sp. nov., Cnemalobus aucamahuida sp. nov. and Cnemalobus domuyo sp. nov. grouped with C. diamante and C. nevado , referred to as the 'Extra-Andean' mountain lineage. Biogeographical analysis recognises vicariant events as the most plausible explanation for the allopatric distributions of the new species. We hypothesise that these vicariant events could be related to climatic barriers that likely promoted speciation processes by generating geographical isolation in ancestral populations. Our findings contribute significantly to the biogeographical understanding of the Patagonian volcanic region, prompting new inquiries to unravel the speciation processes of the endemic biota in extra-Andean mountain systems. ZooBank: urn:lsid:zoobank.org:pub:6A7585E8-5006-45BC-A1A3-F874F18A6049.
The Asian rock-dwelling antlions Navás, 1915 and Navás, 1914 (Neuroptera: Myrmeleontidae): new advancements in systematics, biogeography and life history
Zheng Y, Tu Y, Mai Z, Badano D and Liu X
The antlion genera Gatzara and Nepsalus (Myrmeleontidae: Dendroleontinae) inhabit mountain forests and are characterised by camouflaging larvae. Both genera remain poorly known despite recent findings on systematics and distribution. We report the discovery of new specimens and the previously unknown larvae of the rare species Gatzara jubilaea Navás, 1915, Nepsalus insolitus (Walker, 1860) and N. decorosus (Yang, 1988). These provide new evidence regarding the affinities of these species, and updated knowledge of the distribution, larval morphology and biology. Moreover, a new species of Nepsalus , N. maclachlani Badano, Zheng & Liu, sp. nov. is described from Sri Lanka based on historical museum collections. The discovery of the immature stages of Gatzara shows that the larvae of this genus share the same specialised ecological characteristics and habits as those of Nepsalus but are less morphologically derived. We also reconstruct a molecular phylogeny of this lineage, estimating the divergence time and biogeographical history by adding the new samples. The evolution of the Gatzara + Nepsalus lineage is associated with two major mountain ranges on the southern Tibetan Plateau, i.e. the Himalayas and the Hengduan Mountains. ZooBank: urn:lsid:zoobank.org:pub:68E68211-DFC1-4D98-997B-8A23BA8F9B69.
Phylogeny of the cestode family Escherbothriidae (Cestoda: Rhinebothriidea) reveals unexpected patterns of association with skate hosts
Bueno VM, Trevisan B and Caira JN
The rhinebothriidean tapeworm family Escherbothriidae has recently been expanded to include the genus Ivanovcestus , species of which parasitise arhynchobatid skates. Similarities in morphology and host associations between Ivanovcestus and Semiorbiseptum - a genus yet to be assigned to one of the families in the order Rhinebothriidea - led us to explore the possibility that Semiorbiseptum might also belong in the Escherbothriidae. Morphological similarities with Scalithrium ivanovae , Scalithrium kirchneri and Rhinebothrium scobinae , all of which also parasitise arhynchobatid skates, raised questions regarding the generic placements of these species. In addition, new collections from the skate Sympterygia brevicaudata revealed two new species that morphologically resemble species of Ivanovcestus . A combination of morphological and molecular data were used to assess the generic placement of the newly discovered species and refine our understanding of the membership of the family Escherbothriidae. Sequence data for the D1-D3 region of the 28S rDNA gene were generated de novo for 14 specimens of 7 rhinebothriidean species and combined with comparable published data to represent all 6 families in the Rhinebothriidea in the analysis. The phylogenetic tree resulting from maximum likelihood analysis strongly supports the inclusion of the genus Semiorbiseptum in the family Escherbothriidae. Our work also suggests that the skate-hosted species previously assigned to Scalithrium and Rhinebothrium are also members of Semiorbiseptum and that Ivanovcestus is a junior synonym of Semiorbiseptum . Six species are transferred to Semiorbiseptum , bringing the total number of species in the genus to ten. The diagnosis of Semiorbiseptum is amended to accommodate the additional species. A second species in the previously monotypic type genus of the family, Escherbothrium , is described. The diagnosis of the Escherbothriidae is amended to include the new and transferred species. This study underscores the importance of integrating morphological and molecular data in bringing resolution to cestode systematics. We believe our findings provide a robust foundation for future research into the evolutionary history and host associations of cestodes within the order Rhinebothriidea and beyond. These also highlight the importance of expanding our understanding of skate-hosted cestodes. ZooBank: urn:lsid:zoobank.org:pub:8052AFCA-5FBD-4430-95F4-0E5E368DEA3D.
Molecular phylogeny reveals gen. nov. (Adapedonta: Pharidae), a new freshwater razor clam genus from Indochina
Jeratthitikul E and Sutcharit C
The razor clam genus Novaculina is a secondary marine-derived freshwater taxa within the otherwise exclusively marine family Pharidae. Novaculina currently comprises four valid species that are distributed allopatrically across several drainages in Asia. We employed an integrated approach, combining morphology and molecular phylogenetic analyses to elucidate the taxonomic placement of members within this genus. The multi-locus phylogenetic trees based on cytochrome c oxidase subunit I (COI ), 16S rRNA and 28S rRNA gene sequences demonstrate that Novaculina is polyphyletic. Specimens identified as N. siamensis form a distinct clade that is not sister group to other currently recognised congeners. Furthermore, morphological examination reveals distinct characteristics in 'N. siamensis ', namely a fused, fringed siphon, in contrast to the separated, smooth siphons observed in other species. Based on these findings, we propose the establishment of a new genus, Cenonovaculina gen. nov., to accommodate 'N. siamensis '. The new genus is distinguished from other genera in having a short shell, deep pallial sinus, elongate, oval to bean-shaped anterior adductor scar and long fused siphons surrounded by conical tentacles. ZooBank: urn:lsid:zoobank.org:pub:6E16FC43-5BBA-4791-A805-1C84859877A3.
Novel molecular resources for single-specimen barcoding of enigmatic crustacean y-larvae
Dreyer N, Olesen J, Grygier MJ, Eibye-Jacobsen D, Savchenko AS, Fujita Y, Kolbasov GA, Machida RJ, Chan BKK and Palero F
Despite discovery more than 100years ago and documented global occurrence from shallow waters to the deep sea, the life cycle of the enigmatic crustacean y-larvae isincompletely understood and adult forms remain unknown. To date, only 2 of the 17 formally described species, all based on larval stages, have been investigated using an integrative taxonomic approach. This approach provided descriptions of the morphology of the naupliar and cyprid stages, and made use of exuvial voucher material and DNA barcodes. To improve our knowledge about the evolutionary history and ecological importance of y-larvae, we developed a novel protocol that maximises the amount of morpho-ecological and molecular data that can be harvested from single larval specimens. This includes single-specimen DNA barcoding and daily imaging of y-nauplii reared in culture dishes, mounting of the last naupliar exuviae on a slide as a reference voucher, live imaging of the y-cyprid instar that follows, and fixation, DNA extraction, amplification and sequencing of the y-cyprid specimen. Through development and testing of a suite of new primers for both nuclear and mitochondrial protein-coding and ribosomal genes, we showcase how new sequence data can be used to estimate the phylogeny of Facetotecta. We expect that our novel procedure will help to unravel the complex systematics of y-larvae and show how these fascinating larval forms have evolved. Moreover, we posit that our protocols should work on larval specimens from a diverse array of moulting marine invertebrate taxa.