INTERNATIONAL JOURNAL OF HUMAN GENETICS

Status of Gene in PCB-exposed Population: A Quick Look
Ghosh S, Trnovec T, Palkovicova L, Hoffman EP, Washington K and Dutta SK
Earlier, we have reported that Polychlorinated Biphenyls (PCBs) exposure in Slovak population has made differential gene expression that has linked to the possibilities of some diseases and disorder development in the studied population. Here we report that down-regulation of LEPR (Leptin receptor) gene in the 45-month children may have been following consequences in developing obesity later in life. A pilot high-throughput qRT-PCR [Taqman Low Density Array (TLDA)] study in a small population also corroborated the gene-expression results, and their pathways underlying the consequences of the diseases, amid further detailed large-scale population validation. The study shows the opportunity of predicting long-term effects of chemical exposures using selected genomic classifiers may reflect exposure effect and risk from environmental toxicants.
The Grandest Genetic Experiment Ever Performed on Man? - A Y-Chromosomal Perspective on Genetic Variation in India
Carvalho-Silva DR and Tyler-Smith C
We have analysed Y-chromosomal data from Indian caste, Indian tribal and East Asian populations in order to investigate the impact of the caste system on male genetic variation. We find that variation within populations is lower in India than in East Asia, while variation between populations is overall higher. This observation can be explained by greater subdivision within the Indian population, leading to more genetic drift. However, the effect is most marked in the tribal populations, and the level of variation between caste populations is similar to the level between Chinese populations. The caste system has therefore had a detectable impact on Y-chromosomal variation, but this has been less strong than the influence of the tribal system, perhaps because of larger population sizes in the castes, more gene flow or a shorter period of time.
piRNAs and Their Functions in the Brain
Zuo L, Wang Z, Tan Y, Chen X and Luo X
Piwi-interacting RNAs (piRNAs) are the non-coding RNAs with 24-32 nucleotides (nt). They exhibit stark differences in length, expression pattern, abundance, and genomic organization when compared to micro-RNAs (miRNAs). There are hundreds of thousands unique piRNA sequences in each species. Numerous piRNAs have been identified and deposited in public databases. Since the piRNAs were originally discovered and well-studied in the germline, a few other studies have reported the presence of piRNAs in somatic cells including neurons. This paper reviewed the common features, biogenesis, functions, and distributions of piRNAs and summarized their specific functions in the brain. This review may provide new insights and research direction for brain disorders.