Mechanism of dihydroartemisinin in the treatment of ischaemia/reperfusion-induced acute kidney injury via network pharmacology, molecular dynamics simulation and experiments
To investigate whether dihydroartemisinin (DHA) attenuates ischaemia-reperfusion injury (IRI)-induced acute kidney injury (AKI) in mice by inhibiting oxidative stress and inflammation and to explore its potential molecular mechanisms.
Human leukocyte antigen DR alpha inhibits renal cell carcinoma progression by promoting the polarization of M2 macrophages to M1 via the NF-κB pathway
Human leukocyte antigen DR alpha (HLA-DRA) is recognized for its inhibitory effect on the progression of clear cell renal cell carcinoma (ccRCC); high HLA-DRA expression levels are positively correlated with improved prognosis in patients with ccRCC. In this study, we evaluated HLA-DRA expression in ccRCCs, its effects on tumor-associated macrophage recruitment, and the influence of polarization. Clinical cohort analyses revealed that elevated HLA-DRA expression in ccRCC cells was correlated with enhanced tumor infiltration by M1-type macrophages. In addition, ccRCC prognosis was predicted by combining HLA-DRA expression level analysis and the M1/M2 macrophage ratio. In vitro studies demonstrated that ccRCC cells with increased HLA-DRA expression promoted THP-1 cell migration and induced macrophage polarization toward the M1 phenotype. The effect was further substantiated in a mouse xenograft model in which an increase in M1 macrophages was observed. In addition, co-culturing macrophages with the supernatant from cells overexpressing HLA-DRA induced the expression of proteins associated with both M1 and M2 macrophage polarization. HLA-DRA was intricately linked to the expression and secretion of chemokines, including CCL2, CCL5, MIP-1ɑ, and CXCL-10. Moreover, the NF-κB pathway activation promoted polarization to M1 macrophages. This study shows that HLA-DRA and the M1/M2 ratio are indicators of favorable prognosis in patients with ccRCC. HLA-DRA promotes M1-like polarization by regulating NF-κB, which can be used as a therapeutic target to enhance anti-tumor immunity.
Allogeneic platelet lysate activates the SIRT1-PINK1/Parkin pathway: A promising approach for improving mitochondrial function in an in vitro model of intervertebral disc degeneration
Intervertebral disc degeneration (IVDD) is a common cause of low back pain and spinal issues. Allogeneic platelet lysate (APL) is a blood product for several growth agents. However, only a few studies have revealed that APL can increase autophagy in defective mitochondria by activating the SIRT1-PINK1/parkin pathway while enhancing mitochondrial function to decrease reactive oxygen species (ROS) levels.
Aire attenuate collagen-induced arthritis by suppressing T follicular helper cells through ICOSL
To assess the expression levels of autoimmune regulator (Aire) and inducible costimulator molecule ligand (ICOSL), as well as T follicular helper (Tfh) cell numbers in rheumatoid arthritis (RA) patients, and to explore their relationship with RA severity. We also aimed to investigate the effect of Aire on arthritis and its underlying mechanisms.
Macrophage polarization in sepsis: Emerging role and clinical application prospect
Sepsis is a severe, potentially fatal condition defined by organ dysfunction due to excessive inflammation. Its complex pathogenesis and poor therapeutic outcomes pose significant challenges in treatment. Macrophages, with their high heterogeneity and plasticity, play crucial roles in both the innate and adaptive immune systems. They can polarize into M1-like macrophages, which promote pro-inflammatory responses, or M2-like macrophages, which mediate anti-inflammatory responses, positioning them as critical mediators in the immune response during sepsis.Macrophages are the main regulators of inflammatory responses, and their polarization is also regulated by inflammatory signaling pathways. This review highlights recent advances in the inflammatory signaling pathways involved in sepsis, mechanism of macrophage polarization mediated by inflammation-related signaling pathways in sepsis, and the role of signaling pathway mediated macrophage polarization in organ dysfunction involved in sepsis. We also explore the therapeutic potential of targeting macrophage polarization for immunotherapy, offering new perspectives on macrophage-targeted treatments for sepsis.
(-)-Epigallocatechin-3-gallate (EGCG) ameliorates ovalbumin-induced asthma by inhibiting inflammation via the TNF-α/TNF-R1/NLRP3 signaling pathway
(-)-Epigallocatechin-3-gallate (EGCG) is a polyphenol in green tea with potential lung-protective effects. However, the effects of EGCG on airway inflammation in asthma remain unclear. The aim of this study was to investigate the effect and mechanism of EGCG on asthmatic airway inflammation. In this study, the therapeutic effects of EGCG on ovalbumin (OVA)-induced asthmatic mice were tested first. Second, the effects of EGCG on airway inflammation, airway hyperresponsiveness (AHR), airway mucus hypersecretion, cell apoptosis and differential genes were investigated. Finally, the relationships between the effects of EGCG on airway inflammation and the TNF-α/TNF-R1/NLRP3 signaling pathway in asthmatic mice were explored. The results showed that EGCG could attenuate AHR, alleviate the symptoms of alveolar wall thickening and inflammatory cell infiltration, decrease the levels of inflammatory cytokines and airway mucus markers, reduce apoptosis and reactive oxygen species (ROS) and increase the mitochondrial membrane potential (MMP) in primary lung cells in asthmatic mice. Additionally, EGCG significantly inhibited the activation of the TNF-α/TNF-R1/NLRP3 signaling pathway in the lung tissues of asthmatic mice. The lowest binding free energies of EGCG with TNF-α, TNF-R1 and NLRP3 were -11.6, -11.6 and -8.2 kcal/mol, respectively. Moreover, the equilibrium dissociation constant (KD) of EGCG and TNF-R1was 26.05 μmol/L. EGCG-mediated inhibition of TNF-α/TNF-R1/NLRP3 signaling pathway activation was blocked in LPS-induced BEAS-2B and RAW264.7 cells overexpressing TNF-α. Consequently, EGCG effectively attenuated AHR and inhibited airway inflammation and airway mucus hypersecretion in asthmatic mice, and these effects may be closely related to the TNF-α/TNF-R1/NLRP3 signaling pathway.
Mitochondria dysfunction: A trigger for cardiovascular diseases in systemic lupus erythematosus
Cardiovascular disease (CVD), including pericarditis, myocarditis, sudden cardiac death, coronary heart disease, and stroke, are leading contributors to morbidity and mortality in systemic lupus erythematosus (SLE) patients. Emerging evidence highlights mitochondrial dysfunction as a key driver of cardiovascular pathology in SLE, with impaired oxidative phosphorylation, altered membrane potential, and disrupted metabolic processes promoting oxidative stress, inflammatory activation, and endothelial dysfunction. This review critically examines mitochondrial contributions to CVD in SLE, comparing these mechanisms with those in non-SLE CVD to highlight SLE-specific mitochondrial vulnerabilities. Furthermore, we discuss preclinical and clinical findings supporting mitochondrial pathways as potential therapeutic targets, aiming to bridge gaps in current understanding and outline future research directions. By synthesizing current knowledge of mitochondrial dysregulation, this review proposes therapeutic strategies to improve cardiovascular outcomes and advance patient care in SLE.
PPAB001, a novel bispecific antibody against CD47 and CD24, enhances anti-PD-L1 efficacy in triple-negative breast cancer via reprogramming tumor-associated macrophages towards M1 phenotype
Triple-negative breast cancer (TNBC) is a biologically aggressive tumor with a strong association with a high recurrence rate and poor prognosis. Although anti-PD-L1 antibody, Tecentriq has been approved by FDA for treating TNBC, the overall response rate (ORR) is still generally less than 20 %. PPAB001 is a novel bispecific antibody simultaneously targeting CD47 and CD24. In the present study, we firstly evaluated the activity of PPAB001 on promoting the phagocytosis of TNBC cell lines. And the efficacy by combination of PPAB001 and Tecentriq was also assessed in TNBC 4T-1 mouse model. Moreover, the expression profiling of macrophage-associated genes and surface markers were evaluated upon the combinatorial treatment by flow cytometry, Western blot and IHC analysis. Cell signaling involved in M1 macrophage polarization was further identified via the analysis of RNA-seq, Western blot and immunofluorescnece. Our results demonstrated that PPAB001 effectively promotes phagocytosis of macrophages against human TNBC cell lines and significantly delayed TNBC tumor growth, especially when combined with Tecentriq treatment which may be attributed to the mechanism that simultaneous blockade of CD47 and CD24 signaling maximized the polarization toward M1 phenotype polarization. Especially, RNA-seq analysis and Western blotting further revealed that CXCL9/10-CXCR3 axis was markedly up-regulated and JAK/STAT1 pathway was activated upon treatment with PPAB001 plus Tecentriq. Overall, our results underscore that simultaneous blockade of CD47 and CD24 is a potential therapeutic option to improve the efficacy of anti-PD-L1 therapy mainly by resetting tumor-associated macrophages toward M1 phenotype.
Unveiling the interplay between hepatocyte SATB1 and innate immunity in autoimmune hepatitis
Investigating the function of SATB1 in hepatocytes is essential for developing therapeutic strategies for autoimmune hepatitis (AIH). Although SATB1 has been extensively studied in immune cells, its specific activity in hepatocytes within the context of AIH remains unclear.
Progesterone suppresses rhinovirus-induced airway inflammation by inhibiting neutrophil infiltration and extracellular traps formation
The process of NETosis is observed in a range of inflammatory conditions. Progesterone (P4) has been shown to alleviate inflammation caused by viral infections such as influenza and SARS-CoV-2. However, the precise molecular mechanisms responsible for this effect are not yet fully understood. Therefore, the present investigation aims to explore whether P4 can exert its anti-inflammatory properties by inhibiting NETosis and the related molecular pathways.
Hyperactivity of the IL-33-ILC2s-IL-13-M-MDSCs axis promotes cervical cancer progression
The interleukin-33(IL-33) - group 2 innate lymphoid cells (ILC2s) - interleukin-13(IL-13) - monocytic myeloid-derived suppressor cells (M-MDSCs) axis plays a critical role in promoting immune evasion in tumors; however, its specific function in cervical cancer remains poorly understood. In this study, we observed that the proportion of IL-33-ILC2s-IL-13-M-MDSCs were significantly elevated in both cervical cancer patients and the subcutaneous U14 cervical cancer mouse model, compared to normal controls. Our results suggest that IL-33 stimulates ILC2s to secrete IL-13, which, in turn, regulates M-MDSCs to enhance their immune evasion capabilities. Notably, in vitro blockade of IL-33 and IL-13 partially restored the levels and functions of both ILC2s and M-MDSCs. In conclusion, these findings imply that the overactivation of the IL-33-ILC2s-IL-13-M-MDSCs axis may contribute to cervical cancer progression. However, further in vivo blockade studies are required to fully elucidate the precise mechanisms underlying this interaction and to assess its potential therapeutic implications for cervical cancer.
Exploring molecular mechanism of Panlongqi Tablet (PLQT) against RA: Integrated network pharmacology, molecular docking and experiment validation
Panlongqi Tablet (PLQT), a proprietary Chinese medicine composed of 29 herbs, has been included in the Chinese Medical Insurance List and has shown promising therapeutic effects on patients with rheumatoid arthritis (RA) in clinical practice. However, the molecular mechanisms of PLQT against RA have not been fully elucidated. This study aimed to further decipher the active ingredients and molecular mechanism of PLQT anti-RA.
Downregulation of CD36 alleviates IgA nephropathy by promoting autophagy and inhibiting extracellular matrix accumulation in mesangial cells
Immunoglobulin A Nephropathy (IgAN) is a leading cause of end-stage renal disease (ESRD), but its pathogenesis remains unclear, and specific therapies are currently lacking. Consequently, identifying novel differentially expressed genes (DEGs) and therapeutic targets is of paramount importance to IgAN.
Neutrophil extracellular DNA traps activate the TLR9 signaling pathway of pancreatic ductal epithelial cells in patients with type 2 autoimmune pancreatitis
The presence of neutrophil infiltration around the pancreatic ducts has been found to be associated with type 2 autoimmune pancreatitis (AIP). However, the functional role and clinical significance of neutrophil migration in the progression of pancreatitis is not fully understood. Here, we found that neutrophil extracellular traps (NETs) are abundant around the pancreatic duct in patients with type 2 AIP. We also observed an increased expression of toll-like receptor 9 (TLR9) in pancreatic ductal epithelial cells (HPDEC) in type 2 AIP patients compared to other pancreatic diseases. TLR9 acts as the DNA component of NETs (NET-DNA) receptor in HPDEC, which senses extracellular DNA and subsequently activates the NF-κB pathway to promote neutrophil recruitment and induce NET formation. In addition, our results indicated that the hydroxychloroquine (HCQ), acting as a TLR9 antagonist, could effectively inhibit the activation of inflammatory pathways, reduce neutrophil migration and block the positive feedback loop. The intervention positions HCQ acts as a potential target drug for the clinical treatment of type 2 AIP.
In human CD4+ T-Cells, omeprazole suppresses proliferation, downregulates V-ATPase, and promotes differentiation toward an autoimmunity-favoring phenotype
Proton pump inhibitors (PPIs) represent a commonly prescribed class of medications. Triggered by findings indicating a correlation between PPI usage and susceptibility to infectious or autoimmune diseases, we studied the impact of a pharmacological concentration of omeprazole on human CD4+ T-cells.
Identification of an immune-related gene panel for the diagnosis of pulmonary arterial hypertension using bioinformatics and machine learning
This study aimed to screen an immune-related gene (IRG) panel and develop a novel approach for diagnosing pulmonary arterial hypertension (PAH) utilizing bioinformatics and machine learning (ML).
Isoferulic acid regulates CXCL12/CXCR4-mediated apoptosis and autophagy in podocyte and mice with STZ-induced diabetic nephropathy
Diabetic nephropathy (DN) is the most common microvascular complication of diabetes mellitus and a major cause of end-stage renal disease. Isoferulic acid (IFA) is a phenolic compound that has strong antioxidant, anti-inflammatory, and hypoglycemic effects. Researches and our previous study showed the potential anti-diabetic capacity and anti- oxidative stress damage targeting podocytes of IFA. The purpose of this study was to investigate whether IFA protects MPC5 podocytes from high glucose damage and alleviates DN symptoms in STZ-induced mice, as well as to explore the mechanism. The findings revealed that IFA (10, 25, 50 μM) significantly reduced high glucose-mediated toxicity, abnormal motility and morphology, ROS release, Ca elevation with MPTP opening, apoptotic alterations with Caspase-3/7 activity increase and CXCL12 chemotaxis and interaction with CXCR4 in MPC5 podocytes. Furthermore, IFA increased Podocalyxin and LC3 II/I ratio. Meanwhile, IFA suppressed p53, mTOR, CASK, and p62. Furthermore, IFA has the ability to directly influence downstream mTOR, p53, and CASK apoptotic and podocyte motility regulatory targets when inhibiting the CXCL12/CXCR4 signaling pathway. In the sequent in vivo experiment, the results showed STZ-induced DN mice had higher kidney index, urination, UACR, lipid metabolism abnormalities and renal dysfunction, raised blood glucose, and podocyte damage than normal C57BL/6 mice. However, IFA treatment (50 mg/kg, 25 mg/kg, and 12.5 mg/kg) for 10 weeks restored the DN symptoms in the mice. IFA treatment elevated LC3B and LC3 II/I ratios and decreased p62 via suppressing chemokine axis CXCL12/CXCR4 with PI3K/Akt/mTOR, MMP9, and NF-κB p65 and activating podocyte markers WT1, nephrin, and Podocalyxin, thereby inducing autophagy and mitigating apoptosis in the DN mice kidneys. These findings suggest that IFA protective mechanism on kidney and podocytes simulating DN symptoms is primarily mediated by the CXCL12/CXCR4 pathways with the inactivation of apoptotic pathways and activation of autophagy.
Immunoglobulin G N-glycan markers of mild cognitive impairment in a Chinese population with cerebrovascular stenosis: A case-control study
Immunoglobulin G (IgG) N-glycans have been shown to regulate the inflammatory response in the context of disease. In recent years, it has been found to be associated with several neurodegenerative disorders. In this study, we examined the relationship between IgG N-glycans and mild cognitive impairment (MCI) in a high-risk population for MCI, specifically patients with cerebrovascular stenosis.
Explanation of the obesity paradox of immunotherapy in cancer patients using CT-derived adipose composition parameters: A systematic review and meta-analysis
Although recent studies have reported that obesity is a protective factor for survival in patients with advanced cancers treated with immune checkpoint inhibitors (ICIs), the prognostic value of CT-derived adipose composition parameters remains unclear. This study aimed to assess the association between CT-derived adipose composition parameters and clinical outcomes in cancer patients undergoing ICIs treatment.
FAP gastric cancer mesenchymal stromal cells via paracrining INHBA and remodeling ECM promote tumor progression
Gastric cancer (GC) mesenchymal stromal cells (GCMSCs) are the predominant components of the tumor microenvironment (TME) and play a role in the occurrence, development, and metastasis of tumors. However, GCMSCs exhibit phenotypic and functional heterogeneity. The key population of GCMSCs which are vital to tumor progression remains elusive. The expression of fibroblast activation protein (FAP) in gastric cancer was analyzed and verified using clinical pathology data and single-cell RNA sequencing database of gastric cancer patients. FAP positive GCMSCs (FAP GCMSCs) were isolated via flow cytometry and characterized through transcriptomic sequencing. The impact of conditioned medium from FAP GCMSCs on gastric cancer cell lines was assessed using Enzyme-linked immunosorbent assay (ELISA) and Western blot analyses. Additionally, immunohistochemistry (IHC) and Masson's trichrome staining were employed to explore the association between FAP GCMSCs and extracellular matrix (ECM) deposition in gastric cancer tissues. Our study demonstrates that FAP is predominantly expressed in the mesenchymal stromal cells within the gastric cancer milieu. FAP GCMSCs exhibited enhanced proliferation, migration, contraction, and tumor-promoting capabilities compared to their FAP counterparts. These cells significantly increased proliferation and migration of gastric cancer cells through the paracrine secretion of Inhibin Subunit Beta A (INHBA) and activation of the SMAD2/3 signaling pathway. Moreover, FAP GCMSCs also induced collagen deposition in ECM and then up-regulated invasion and stemness of GC cells. Mechanistically, this process was mediated by the interaction of collagen with Integrin Subunit Beta 1 (ITGB1), triggering the phosphorylation of Focal Adhesion Kinase (FAK) and Yes Associated Transcriptional Regulator (YAP). Our findings reveal that FAP GCSMCs enhanced the GC progression via releasing cytokine INHBA and remodeling ECM providing a theoretical basis for further exploration of tumor stromal-targeting therapy of gastric cancer.
Transcranial focused ultrasound stimulation alleviates NLRP3-related neuroinflammation induced by ischemic stroke via regulation of the Nespas/miR-383-3p/SHP2 pathway
Transcranial focused ultrasound stimulation (tFUS) has emerged as a promising therapeutic strategy for mitigating brain injury in animal models. In this study, the effects and mechanisms of tFUS on ischemic stroke were explored in a transient middle cerebral artery occlusion (MCAO) rat model. Low-intensity tFUS was administered to the ischemic hemisphere 24 h post-MCAO for seven consecutive days. Neurological function was evaluated through neurobehavioral assessments following tFUS treatment. Western blotting, immunofluorescence staining, and quantitative real-time PCR were performed to examine the impact of tFUS on NLRP3-related neuroinflammation using brain tissues from MCAO rats and BV2 cells subjected to oxygen glucose deprivation/reperfusion (OGD/R). Additionally, RNA sequencing and cell transient transfection were employed to elucidate the underlying mechanisms. The findings revealed that tFUS improved neurobehavioral performance, reduced infarct size, and suppressed NLRP3 inflammasome activation seven days post-MCAO. Notably, Nespas expression was significantly elevated in tFUS-treated rats, whereas Nespas silencing exacerbated neurological deficits and enhanced NLRP3 activation. Moreover, Nespas positively regulated src homology 2 domain-containing tyrosine phosphatase-2 (SHP2), and SHP2 inhibition significantly amplified NLRP3 activation. Mechanistic in vitro studies further demonstrated that Nespas attenuated microglial NLRP3 activation via the Nespas/miR-383-3p/SHP2 pathway. These results suggest that the neuroprotective effects of tFUS are likely mediated through the upregulation of Nespas and suppression of NLRP3 via the Nespas/miR-383-3p/SHP2 axis, offering new insights into the molecular mechanisms supporting tFUS as a potential therapeutic approach for stroke-induced brain injury.