Information Visualization

Which emphasis technique to use? Perception of emphasis techniques with varying distractors, backgrounds, and visualization types
Mairena A, Gutwin C and Cockburn A
Emphasis effects are visual changes that make data elements distinct from their surroundings. Designers may use computational saliency models to predict how a viewer's attention will be guided by a specific effect; however, although saliency models provide a foundational understanding of emphasis perception, they only cover specific visual effects in abstract conditions. To address these limitations, we carried out crowdsourced studies that evaluate emphasis perception in a wider range of conditions than previously studied. We varied effect magnitude, distractor number and type, background, and visualization type, and measured the perceived emphasis of 12 visual effects. Our results show that there are perceptual commonalities of emphasis across a wide range of environments, but also that there are limitations on perceptibility for some effects, dependent on a visualization's background or type. We developed a model of emphasis predictability based on simple scatterplots that can be extended to other viewing conditions. Our studies provide designers with new understanding of how viewers experience emphasis in realistic visualization settings.
Projections as visual aids for classification system design
Rauber PE, Falcão AX and Telea AC
Dimensionality reduction is a compelling alternative for high-dimensional data visualization. This method provides insight into high-dimensional feature spaces by mapping relationships between observations (high-dimensional vectors) to low (two or three) dimensional spaces. These low-dimensional representations support tasks such as outlier and group detection based on direct visualization. Supervised learning, a subfield of machine learning, is also concerned with observations. A key task in supervised learning consists of assigning class labels to observations based on generalization from previous experience. Effective development of such classification systems depends on many choices, including features descriptors, learning algorithms, and hyperparameters. These choices are not trivial, and there is no simple recipe to improve classification systems that perform poorly. In this context, we first propose the use of visual representations based on dimensionality reduction (projections) for predictive feedback on classification efficacy. Second, we propose a projection-based visual analytics methodology, and supportive tooling, that can be used to improve classification systems through feature selection. We evaluate our proposal through experiments involving four datasets and three representative learning algorithms.
Graphing trillions of triangles
Burkhardt P
The increasing size of is often heralded but how data are transformed and represented is also profoundly important to knowledge discovery, and this is exemplified in analytics. Much attention has been placed on the scale of the input graph but the product of a graph algorithm can be many times larger than the input. This is true for many graph problems, such as listing all triangles in a graph. Enabling scalable graph exploration for requires new approaches to algorithms, architectures, and visual analytics. A brief tutorial is given to aid the argument for thoughtful representation of data in the context of graph analysis. Then a new algebraic method to reduce the arithmetic operations in counting and listing triangles in graphs is introduced. Additionally, a scalable triangle listing algorithm in the MapReduce model will be presented followed by a description of the experiments with that algorithm that led to the current largest and fastest triangle listing benchmarks to date. Finally, a method for identifying triangles in new visual graph exploration technologies is proposed.
Visual analysis of online social media to open up the investigation of stance phenomena
Kucher K, Schamp-Bjerede T, Kerren A, Paradis C and Sahlgren M
Online social media are a perfect text source for stance analysis. Stance in human communication is concerned with speaker attitudes, beliefs, feelings and opinions. Expressions of stance are associated with the speakers' view of what they are talking about and what is up for discussion and negotiation in the intersubjective exchange. Taking stance is thus crucial for the social construction of meaning. Increased knowledge of stance can be useful for many application fields such as business intelligence, security analytics, or social media monitoring. In order to process large amounts of text data for stance analyses, linguists need interactive tools to explore the textual sources as well as the processed data based on computational linguistics techniques. Both original texts and derived data are important for refining the analyses iteratively. In this work, we present a visual analytics tool for online social media text data that can be used to open up the investigation of stance phenomena. Our approach complements traditional linguistic analysis techniques and is based on the analysis of utterances associated with two stance categories: sentiment and certainty. Our contributions include (1) the description of a novel web-based solution for analyzing the use and patterns of stance meanings and expressions in human communication over time; and (2) specialized techniques used for visualizing analysis provenance and corpus overview/navigation. We demonstrate our approach by means of text media on a highly controversial scandal with regard to expressions of anger and provide an expert review from linguists who have been using our tool.
Dimensionality Reduction on Multi-Dimensional Transfer Functions for Multi-Channel Volume Data Sets
Kim HS, Schulze JP, Cone AC, Sosinsky GE and Martone ME
The design of transfer functions for volume rendering is a non-trivial task. This is particularly true for multi-channel data sets, where multiple data values exist for each voxel, which requires multi-dimensional transfer functions. In this paper, we propose a new method for multi-dimensional transfer function design. Our new method provides a framework to combine multiple computational approaches and pushes the boundary of gradient-based multi-dimensional transfer functions to multiple channels, while keeping the dimensionality of transfer functions at a manageable level, i.e., a maximum of three dimensions, which can be displayed visually in a straightforward way. Our approach utilizes channel intensity, gradient, curvature and texture properties of each voxel. Applying recently developed nonlinear dimensionality reduction algorithms reduces the high-dimensional data of the domain. In this paper, we use Isomap and Locally Linear Embedding as well as a traditional algorithm, Principle Component Analysis. Our results show that these dimensionality reduction algorithms significantly improve the transfer function design process without compromising visualization accuracy. We demonstrate the effectiveness of our new dimensionality reduction algorithms with two volumetric confocal microscopy data sets.
A design framework for exploratory geovisualization in epidemiology
Robinson AC
This paper presents a design framework for geographic visualization based on iterative evaluations of a toolkit designed to support cancer epidemiology. The Exploratory Spatio-Temporal Analysis Toolkit (ESTAT), is intended to support visual exploration through multivariate health data. Its purpose is to provide epidemiologists with the ability to generate new hypotheses or further refine those they may already have. Through an iterative user-centered design process, ESTAT has been evaluated by epidemiologists at the National Cancer Institute (NCI). Results of these evaluations are discussed, and a design framework based on evaluation evidence is presented. The framework provides specific recommendations and considerations for the design and development of a geovisualization toolkit for epidemiology. Its basic structure provides a model for future design and evaluation efforts in information visualization.