Navigating the mutation maze: An oncogenic driver's guide to macrophage reprogramming
The mechanisms by which oncogenic mutations and anatomical locations work together to influence the immune environment within tumors are not well understood. In this issue of Immunity, Ross et al. show that H3.3K27M diffuse midline gliomas (DMGs) are enriched with disease-associated myeloid cells (DAMs). Myeloid-targeted strategies reprogram DAMs to a homeostatic state, reduce myeloid infiltration into tumors, and prolong survival.
TKI resistance in brain metastasis: A CTLA4 state of mind
Resistance to tyrosine kinase inhibitors (TKIs) in lung cancer brain metastasis (LCBM) remains a clinical challenge. Recently in Cancer Cell, Fu et al. reveal how TKIs reshape the immune microenvironment of LCBM and propose CTLA4 blockade as a promising strategy to overcome resistance.
T cells standing at the gates of brain metastasis
Insufficient influx of T cells into the tumor microenvironment, including brain metastasis, dramatically limits efficacy of conventional immunotherapy. In this issue of Immunity, Messmer et al. interrogate spatiotemporal dependencies of melanoma brain metastasis T cell infiltration by intravital microscopy. They find that T cells enter these brain tumors through peritumoral venous vessels and can be stimulated with immunotherapy.
Sialylated IgG induces the transcription factor REST in alveolar macrophages to protect against lung inflammation and severe influenza disease
While most respiratory viral infections resolve with little harm to the host, severe symptoms arise when infection triggers an aberrant inflammatory response that damages lung tissue. Host regulators of virally induced lung inflammation have not been well defined. Here, we show that enrichment for sialylated, but not asialylated immunoglobulin G (IgG), predicted mild influenza disease in humans and was broadly protective against heterologous influenza viruses in a murine challenge model. Mechanistic studies show that sialylated IgG mediated this protection by inducing the transcription factor repressor element-1 silencing transcription factor (REST), which repressed nuclear factor κB (NF-κB)-driven responses, preventing severe lung inflammation and protecting lung function during influenza infection. Therapeutic administration of a recombinant, sialylated Fc molecule in clinical development similarly activated REST and protected against severe influenza disease, demonstrating that this pathway could be clinically harnessed. Overall, induction of REST through sialylated IgG signaling is a strategy to limit inflammatory disease sequelae in infections caused by antigenically distinct influenza strains.
CAR T cells in autoimmune disease: On the road to remission
Several recent reports have demonstrated that B cell-targeting chimeric antigen receptor (CAR) T cells offer a viable treatment option for patients with autoantibody-mediated autoimmune diseases. To present additional data on this therapy and discuss strategies for more efficient clinical translation, leading experts in CAR T cell therapy for autoimmunity from various countries, including China, Germany, and the United States, convened at the "1st International Autoimmune CAR T Innovators Summit" in Grassau, Germany, from May 10-12, 2024. The summit showcased additional insights of CAR T cell therapy in diverse autoimmune diseases and provided platforms for discussions on key questions through workshops and roundtables. Here, we summarize the recent findings and key developments reported at the summit.
Targeting the aminopeptidase ERAP enhances antitumor immunity by disrupting the NKG2A-HLA-E inhibitory checkpoint
The aminopeptidase, endoplasmic reticulum aminopeptidase 1 (ERAP1), trims peptides for loading into major histocompatibility complex class I (MHC class I), and loss of this activity has broad effects on the MHC class I peptidome. Here, we investigated the impact of targeting ERAP1 in immune checkpoint blockade (ICB), as MHC class I interactions mediate both activating and inhibitory functions in antitumor immunity. Loss of ERAP sensitized mouse tumor models to ICB, and this sensitivity depended on CD8 T cells and natural killer (NK) cells. In vivo suppression screens revealed that Erap1 deletion inactivated the inhibitory NKG2A-HLA-E checkpoint, which requires presentation of a restricted set of invariant epitopes (VL9) on HLA-E. Loss of ERAP altered the HLA-E peptidome, preventing NKG2A engagement. In humans, ERAP1 and ERAP2 showed functional redundancy for the processing and presentation of VL9, and loss of both inactivated the NKG2A checkpoint in cancer cells. Thus, loss of ERAP phenocopies the inhibition of the NKG2A-HLA-E pathway and represents an attractive approach to inhibit this critical checkpoint.
Home at last: Mixed signals guide memory T cells to residency
Tissue-resident memory T (T) cells adapt to diverse environments, providing local long-term protection. In this issue of Immunity, Obers et al. and Raynor et al. demonstrate how diet, commensals, and host factors determine T cell development, maintenance, and function across tissues.
Mx1-ing it up-Mitochondrial relay for interferon-dependent, unconventional IL-1β release in SLE monocytes
The role of type I interferon (IFN-I) in systemic lupus erythematosus (SLE) is well documented, but the role of interleukin (IL)-1β remains elusive. In this issue of Immunity, Caielli et al. identified an SLE monocyte population coproducing IL-1β and IFN-I and described how mitochondrial nucleic-acid-containing RBCs engage cGAS/STING, RIG-I, MDA5, and NLRP3 for unconventional IL-1β release.
Microglia and monocyte-derived macrophages drive progression of pediatric high-grade gliomas and are transcriptionally shaped by histone mutations
Pediatric high-grade gliomas (pHGGs), including hemispheric pHGGs and diffuse midline gliomas (DMGs), harbor mutually exclusive tumor location-specific histone mutations. Using immunocompetent de novo mouse models of pHGGs, we demonstrated that myeloid cells were the predominant infiltrating non-neoplastic cell population. Single-cell RNA sequencing (scRNA-seq), flow cytometry, and immunohistochemistry illustrated the presence of heterogeneous myeloid cell populations shaped by histone mutations and tumor location. Disease-associated myeloid (DAM) cell phenotypes demonstrating immune permissive characteristics were identified in murine and human pHGG samples. H3.3K27M DMGs, the most aggressive DMG, demonstrated enrichment of DAMs. Genetic ablation of chemokines Ccl8 and Ccl12 resulted in a reduction of DAMs and an increase in lymphocyte infiltration, leading to increased survival of tumor-bearing mice. Pharmacologic inhibition of chemokine receptors CCR1 and CCR5 resulted in extended survival and decreased myeloid cell infiltration. This work establishes the tumor-promoting role of myeloid cells in DMG and the potential therapeutic opportunities for targeting them.
A pan-family screen of nuclear receptors in immunocytes reveals ligand-dependent inflammasome control
Ligand-dependent transcription factors of the nuclear receptor (NR) family regulate diverse aspects of metazoan biology, enabling communications between distant organs via small lipophilic molecules. Here, we examined the impact of each of 35 NRs on differentiation and homeostatic maintenance of all major immunological cell types in vivo through a "Rainbow-CRISPR" screen. Receptors for retinoic acid exerted the most frequent cell-specific roles. NR requirements varied for resident macrophages of different tissues. Deletion of either Rxra or Rarg reduced frequencies of GATA6 large peritoneal macrophages (LPMs). Retinoid X receptor alpha (RXRα) functioned conventionally by orchestrating LPM differentiation through chromatin and transcriptional regulation, whereas retinoic acid receptor gamma (RARγ) controlled LPM survival by regulating pyroptosis via association with the inflammasome adaptor ASC. RARγ antagonists activated caspases, and RARγ agonists inhibited cell death induced by several inflammasome activators. Our findings provide a broad view of NR function in the immune system and reveal a noncanonical role for a retinoid receptor in modulating inflammasome pathways.
Retinoic acid and TGF-β orchestrate organ-specific programs of tissue residency
Tissue-resident memory T (T) cells are integral to tissue immunity, persisting in diverse anatomical sites where they adhere to a common transcriptional framework. How these cells integrate distinct local cues to adopt the common T cell fate remains poorly understood. Here, we show that whereas skin T cells strictly require transforming growth factor β (TGF-β) for tissue residency, those in other locations utilize the metabolite retinoic acid (RA) to drive an alternative differentiation pathway, directing a TGF-β-independent tissue residency program in the liver and synergizing with TGF-β to drive T cells in the small intestine. We found that RA was required for the long-term maintenance of intestinal T populations, in part by impeding their retrograde migration. Moreover, enhanced RA signaling modulated T cell phenotype and function, a phenomenon mirrored in mice with increased microbial diversity. Together, our findings reveal RA as a fundamental component of the host-environment interaction that directs immunosurveillance in tissues.
Autoimmune CD4 T cells fine-tune TCF1 expression to maintain function and survive persistent antigen exposure during diabetes
Self-reactive T cells experience chronic antigen exposure but do not exhibit signs of exhaustion. Here, we investigated the mechanisms for sustained, functioning autoimmune CD4 T cells despite chronic stimulation. Examination of T cell priming showed that CD4 T cells activated in the absence of infectious signals retained TCF1 expression. At later time points and during blockade of new T cell recruitment, most islet-infiltrating autoimmune CD4 T cells were TCF1, although expression was reduced on a per T cell basis. The Tcf7 locus was epigenetically modified in circulating autoimmune CD4 T cells, suggesting a pre-programmed de novo methylation of the locus in early stages of autoimmune CD4 T cell differentiation. This mirrored the epigenetic profile of recently recruited CD4CD62L T cells in the pancreas. Collectively, these data reveal a unique environment during autoimmune CD4 T cell priming that allows T cells to fine-tune TCF1 expression and maintain long-term survival and function.
Apolipoprotein E aggregation in microglia initiates Alzheimer's disease pathology by seeding β-amyloidosis
The seeded growth of pathogenic protein aggregates underlies the pathogenesis of Alzheimer's disease (AD), but how this pathological cascade is initiated is not fully understood. Sporadic AD is linked genetically to apolipoprotein E (APOE) and other genes expressed in microglia related to immune, lipid, and endocytic functions. We generated a transgenic knockin mouse expressing HaloTag-tagged APOE and optimized experimental protocols for the biochemical purification of APOE, which enabled us to identify fibrillary aggregates of APOE in mice with amyloid-β (Aβ) amyloidosis and in human AD brain autopsies. These APOE aggregates that stained positive for β sheet-binding dyes triggered Aβ amyloidosis within the endo-lysosomal system of microglia, in a process influenced by microglial lipid metabolism and the JAK/STAT signaling pathway. Taking these observations together, we propose a model for the onset of Aβ amyloidosis in AD, suggesting that the endocytic uptake and aggregation of APOE by microglia can initiate Aβ plaque formation.
CRISPR screens unveil nutrient-dependent lysosomal and mitochondrial nodes impacting intestinal tissue-resident memory CD8 T cell formation
Nutrient availability and organelle biology direct tissue homeostasis and cell fate, but how these processes orchestrate tissue immunity remains poorly defined. Here, using in vivo CRISPR-Cas9 screens, we uncovered organelle signaling and metabolic processes shaping CD8 tissue-resident memory T (T) cell development. T cells depended on mitochondrial translation and respiration. Conversely, three nutrient-dependent lysosomal signaling nodes-Flcn, Ragulator, and Rag GTPases-inhibited intestinal T cell formation. Depleting these molecules or amino acids activated the transcription factor Tfeb, thereby linking nutrient stress to T programming. Further, Flcn deficiency promoted protective T cell responses in the small intestine. Mechanistically, the Flcn-Tfeb axis restrained retinoic acid-induced CCR9 expression for migration and transforming growth factor β (TGF-β)-mediated programming for lineage differentiation. Genetic interaction screening revealed that the mitochondrial protein Mrpl52 enabled early T cell formation, while Acss1 controlled T cell development under Flcn deficiency-associated lysosomal dysregulation. Thus, the interplay between nutrients, organelle signaling, and metabolic adaptation dictates tissue immunity.
Transcription factor TCF1 binds to RORγt and orchestrates a regulatory network that determines homeostatic Th17 cell state
T helper (Th) 17 cells encompass a spectrum of cell states, including cells that maintain homeostatic tissue functions and pro-inflammatory cells that can drive autoimmune tissue damage. Identifying regulators that determine Th17 cell states can identify ways to control tissue inflammation and restore homeostasis. Here, we found that interleukin (IL)-23, a cytokine critical for inducing pro-inflammatory Th17 cells, decreased transcription factor T cell factor 1 (TCF1) expression. Conditional deletion of TCF1 in mature T cells increased the pro-inflammatory potential of Th17 cells, even in the absence of IL-23 receptor signaling, and conferred pro-inflammatory potential to homeostatic Th17 cells. Conversely, sustained TCF1 expression decreased pro-inflammatory Th17 potential. Mechanistically, TCF1 bound to RORγt, thereby interfering with its pro-inflammatory functions, and orchestrated a regulatory network that determined Th17 cell state. Our findings identify TCF1 as a major determinant of Th17 cell state and provide important insight for the development of therapies for Th17-driven inflammatory diseases.
Progressive polyadenylation and m6A modification of Ighg1 mRNA maintain IgG1 antibody homeostasis in antibody-secreting cells
Antigen-specific antibodies are generated by antibody-secreting cells (ASCs). How RNA post-transcriptional modification affects antibody homeostasis remains unclear. Here, we found that mRNA polyadenylations and N6-methyladenosine (m6A) modifications maintain IgG1 antibody production in ASCs. IgG heavy-chain transcripts (Ighg) possessed a long 3' UTR with m6A sites, targeted by the m6A reader YTHDF1. B cell-specific deficiency of YTHDF1 impaired IgG production upon antigen immunization through reducing Ighg1 mRNA abundance in IgG1 ASCs. Disrupting either the m6A modification of a nuclear-localized splicing intermediate Ighg1 or the nuclear localization of YTHDF1 reduced Ighg1 transcript stability. Single-cell RNA sequencing identified an ASC subset with excessive YTHDF1 expression in systemic lupus erythematosus patients, which was decreased upon therapy with immunosuppressive drugs. In a lupus mouse model, inhibiting YTHDF1-m6A interactions alleviated symptoms. Thus, we highlight a mechanism in ASCs to sustain the homeostasis of IgG antibody transcripts by integrating Ighg1 mRNA polyadenylation and m6A modification.
Acute suppression of mitochondrial ATP production prevents apoptosis and provides an essential signal for NLRP3 inflammasome activation
How mitochondria reconcile roles in functionally divergent cell death pathways of apoptosis and NLRP3 inflammasome-mediated pyroptosis remains elusive, as is their precise role in NLRP3 activation and the evolutionarily conserved physiological function of NLRP3. Here, we have shown that when cells were challenged simultaneously, apoptosis was inhibited and NLRP3 activation prevailed. Apoptosis inhibition by structurally diverse NLRP3 activators, including nigericin, imiquimod, extracellular ATP, particles, and viruses, was not a consequence of inflammasome activation but rather of their effects on mitochondria. NLRP3 activators turned out as oxidative phosphorylation (OXPHOS) inhibitors, which we found to disrupt mitochondrial cristae architecture, leading to trapping of cytochrome c. Although this effect was alone not sufficient for NLRP3 activation, OXPHOS inhibitors became triggers of NLRP3 when combined with resiquimod or Yoda-1, suggesting that NLRP3 activation requires two simultaneous cellular signals, one of mitochondrial origin. Therefore, OXPHOS and apoptosis inhibition by NLRP3 activators provide stringency in cell death decisions.
Isolation and escape mapping of broadly neutralizing antibodies against emerging delta-coronaviruses
Porcine delta-coronavirus (PDCoV) spillovers were recently detected in febrile children, underscoring the recurrent zoonoses of divergent CoVs. To date, no vaccines or specific therapeutics are approved for use in humans against PDCoV. To prepare for possible future PDCoV epidemics, we isolated PDCoV spike (S)-directed monoclonal antibodies (mAbs) from humanized mice and found that two, designated PD33 and PD41, broadly neutralized a panel of PDCoV variants. Cryoelectron microscopy (cryo-EM) structures of PD33 and PD41 in complex with the S receptor-binding domain (RBD) and ectodomain trimer revealed the epitopes recognized by these mAbs, rationalizing their broad inhibitory activity. We show that both mAbs competitively interfere with host aminopeptidase N binding to neutralize PDCoV and used deep-mutational scanning epitope mapping to associate RBD antigenic sites with mAb-mediated neutralization potency. Our results indicate a PD33-PD41 mAb cocktail may heighten the barrier to escape. PD33 and PD41 are candidates for clinical advancement against future PDCoV outbreaks.
Antigen-presenting cells as specialized drivers of intestinal T cell functions
The immune system recognizes a multitude of innocuous antigens from food and intestinal commensal microbes toward which it orchestrates appropriate, non-inflammatory responses. This process requires antigen-presenting cells (APCs) that induce T cells with either regulatory or effector functions. Compromised APC function disrupts the T cell balance, leading to inflammation and dysbiosis. Although their precise identities continue to be debated, it has become clear that multiple APC lineages direct the differentiation of distinct microbiota-specific CD4 T cell programs. Here, we review how unique APC subsets instruct T cell differentiation and function in response to microbiota and dietary antigens. These discoveries provide new opportunities to investigate T cell-APC regulatory networks controlling immune homeostasis and perturbations associated with inflammatory and allergic diseases.
LAGging behind no more: PD-1 has a new immunotherapy partner
PD-1 blockade partially reverses T cell exhaustion in cancer patients, but broad responses are still limited. Three studies recently published in Cell illuminate how abrogating LAG-3 and PD-1 synergize to further push effector T cell functionality via distinct molecular mechanisms.
Maintenance and functional regulation of immune memory to COVID-19 vaccines in tissues
Memory T and B cells in tissues are essential for protective immunity. Here, we performed a comprehensive analysis of the tissue distribution, phenotype, durability, and transcriptional profile of COVID-19 mRNA vaccine-induced immune memory across blood, lymphoid organs, and lungs obtained from 63 vaccinated organ donors aged 23-86, some of whom experienced SARS-CoV-2 infection. Spike (S)-reactive memory T cells were detected in lymphoid organs and lungs and variably expressed tissue-resident markers based on infection history, and S-reactive B cells comprised class-switched memory cells resident in lymphoid organs. Compared with blood, S-reactive tissue memory T cells persisted for longer times post-vaccination and were more prevalent with age. S-reactive T cells displayed site-specific subset compositions and functions: regulatory cell profiles were enriched in tissues, while effector and cytolytic profiles were more abundant in circulation. Our findings reveal functional compartmentalization of vaccine-induced T cell memory where surveilling effectors and in situ regulatory responses confer protection with minimal tissue damage.