Design and Validation of a Novel Robotic Neck Brace for Cervical Traction
Cervical traction is a common and effective treatment for degenerative disk diseases and pain in the cervical spine. However, the manual or mechanical methods of applying traction to the head-neck are limited due to variability in the applied forces and orientation of the head-neck relative to the shoulder during the procedure. Current robotic neck braces are not designed to provide independent rotation angles and independent vertical translation, or traction, to the brace end-effector connected to the head, making them unsuitable for traction application. This work proposes a novel architecture of a robotic neck brace, which can provide vertical traction to the head while keeping the head in a prescribed orientation, with flexion and lateral bending angles. In this paper, the kinematics of the end-effector attached to the head relative to a coordinate frame on the shoulders are described as well as the velocity kinematics and force control. The paper also describes benchtop experiments designed to validate the position control and the ability of the brace to provide a vertical traction force. It was shown that the maximum achievable end-effector orientations are 16° in flexion, 13.9° in extension, and ± 6.5° in lateral bending. The kinematic model of the active brace was validated using an independent motion capture system with a maximum root mean square error of 2.41°. In three different orientations of the end-effector, neutral, flexed, and laterally bent, the brace was able to provide a consistent upward traction force during intermittent force application. In these configurations, the force error has standard deviations of 0.55, 0.29, and 0.07N, respectively. This work validates the mechanism's ability to achieve a range of head orientations and provide consistent upward traction force in these orientations, making it a promising intervention tool in cases of cervical disk degeneration.
Modeling and Control of an MR-Safe Pneumatic Radial Inflow Motor and Encoder (PRIME)
Magnetic resonance (MR) conditional actuators and encoders are the key components for MR-guided robotic systems. In this article, we present the modeling and control of our MR-safe pneumatic radial inflow motor and encoder. A comprehensive model is developed that considers the primary dynamic elements of the system, including: 1) motor dynamics, 2) pneumatic transmission line dynamics, and 3) valve dynamics. After model validation, we present a simplified third order model that facilitates design of a first order sliding mode controller (TO-SMC). Finally, the motor hardware is tested in a 7T MRI. No image distortion or artifacts were observed. We posit the MR-safe motor and dynamic model will lower the entry barriers for researchers interested in MR-guided robots and promote wider adoption of MR-guided robotic systems.
Corrections to "Micropositioning and Control of an Underactuated Platform for Microscopic Applications"
[This corrects the article PMC5110010.].
Extracorporeal Blood Pump driven by a Novel Bearingless Split-Tooth Flux-Reversal Motor
This paper describes a novel bearingless split tooth flux reversal motor with integrated centrifugal blood pump. This motor has a magnet-free rotor, and is capable of operating at up to 3000 rpm with up to 100 mNm torque. The motor also has 50 N radial force capability for centering the rotor. The motor rotor is 50 mm diameter, housed in a 170mm wide stator. The motor has a novel magnetic configuration wherein the force generation is independent of the rotor angle. This allows simple radial force generation using stator-fixed currents. The motor torque is generated using commutated two-phase currents. Finite element simulations are used to optimize the design in order to achieve sufficient radial force and motor torque, while minimizing cogging torque. The design also achieves an axial passive magnetic stiffness of 5.4 N/mm, which is the constraint on axial motions of the rotor. This paper includes mechanical design and fabrication details, as well as experimental closed loop levitation and speed control performance. With an integrated impeller, the rotor and the centrifugal pump are tested by pumping fluid in a closed circuit to obtain experimental pressure-flow curves with impeller-limited performance.
MRI-Conditional Eccentric-Tube Injection Needle: Design, Fabrication, and Animal Trial
Effective radiation therapy aims to maximize the radiation dose delivered to the tumor while minimizing damage to the surrounding healthy tissues, which can be a challenging task when the tissue-tumor space is small. To eliminate the damage to healthy tissue, it is now possible to inject biocompatible hydrogels between cancerous targets and surrounding tissues to create a spacer pocket. Conventional methods have limitations in poor target visualization and device tracking. In this paper, we leverage our MR-tracking technique to develop a novel injection needle for hydrogel spacer deployment. Herein, we present the working principle and fabrication method, followed by benchtop validation in an agar phantom, and MRI-guided validation in tissue-mimic prostate phantom and sexually mature female swine. Animal trials indicated that the spacer pockets in the rectovaginal septum can be accurately visualized on T2-weighted MRI. The experimental results showed that the vaginal-rectal spacing was successfully increased by 12 ± 2 mm anterior-posterior.
Influence of Antagonistic Tensions on Distributed Friction Forces of Multisegment Tendon-Driven Continuum Manipulators With Irregular Geometry
In this paper, we thoroughly analyze the effect of single-tendon and antagonistic tendons actuation on tension loss of multi-segment tendon-driven continuum manipulators (TD-CMs) with irregular geometry. To this end, we propose a generic analytical modeling approach and iterative algorithm that can solve the unknown correlation between distributed friction force, tendons' tension transmission loss, and planar deformation behavior of TD-CMs during tendons' pulling and releasing phases. The proposed generic model solely relies on known input tendons' tensions and does not require knowledge of the manipulator's shape and/or other experimental conditions. To investigate the influence of actuation type on tension loss and deformation behavior of TD-CMs, we fabricated two different TD-CMs and performed various simulation and experimental studies with single-tendon and antagonistic tensions actuations. The obtained results indicate the importance of considering the effect of distributed friction force and actuation type on tension(s) loss of multi-segment TD-CMs. Moreover, it clearly demonstrates the efficacy and accuracy of the proposed model in providing insights and understanding of tension transmission process in various types of actuations in multi-segment TD-CMs with irregular geometry.
Multiphysical Analytical Modeling and Design of A Magnetically Steerable Robotic Catheter for Treatment of Peripheral Artery Disease
This article presents a unique multiphysical analytical modeling framework and solution algorithm to provide an effective tool for design of magnetically steerable robotic catheters (MSRCs) experiencing external interaction loads. Particularly, in this study, we are interested in design and fabrication of a MSRC with flexural patterns for treatment of peripheral artery disease (PAD). Aside from the parameters involved in the magnetic actuation system and the external interaction loads acting on the MSRC, the considered flexural patterns have a critical role on the deformation behavior and steerability of the proposed MSRC. Therefore, to optimally design such MSRC, we utilized the proposed multiphysical modeling approach and thoroughly evaluated the influence of involved parameters on the performance of the MSRC via two simulations studies. We also conducted experimental studies in a free bending condition and in the presence of different external interaction loads on two custom-designed MSRCs to thoroughly evaluate the efficacy of the proposed multiphysical model and solution algorithm. Our analysis demonstrates the accuracy of the proposed approach and necessity of utilizing such models to optimally design a MSRC before fabrication procedure.
Design and Backdrivability Modeling of a Portable High Torque Robotic Knee Prosthesis With Intrinsic Compliance For Agile Activities
High-performance prostheses are crucial to enable versatile activities like walking, squatting, and running for lower extremity amputees. State-of-the-art prostheses are either not powerful enough to support demanding activities or have low compliance (low backdrivability) due to the use of high speed ratio transmission. Besides speed ratio, gearbox design is also crucial to the compliance of wearable robots, but its role is typically ignored in the design process. This paper proposed an analytical backdrive torque model that accurately estimate the backdrive torque from both motor and transmission to inform the robot design. Following this model, this paper also proposed methods for gear transmission design to improve compliance by reducing inertia of the knee prosthesis. We developed a knee prosthesis using a high torque actuator (built-in 9:1 planetary gear) with a customized 4:1 low-inertia planetary gearbox. Benchtop experiments show the backdrive torque model is accurate and proposed prosthesis can produce 200 Nm high peak torque (shield temperature <60°C), high compliance (2.6 Nm backdrive torque), and high control accuracy (2.7/8.1/1.7 Nm RMS tracking errors for 1.25 m/s walking, 2 m/s running, and 0.25 Hz squatting, that are 5.4%/4.1%/1.4% of desired peak torques). Three able-bodied subject experiments showed our prosthesis could support agile and high-demanding activities.
MR-Tracked Deflectable Stylet for Gynecologic Brachytherapy
Brachytherapy is a radiation based treatment that is implemented by precisely placing focused radiation sources into tumors. In advanced interstitial cervical cancer bracytherapy treatment, this is performed by placing a metallic rod ("stylet") inside a hollow cylindrical tube ("catheter") and advancing the pair to the desired target. The stylet is removed once the target is reached, followed by the insertion of radiation sources into the catheter. However, manually advancing an initially straight stylet into the tumor with millimeter spatial accuracy has been a long-standing challenge, which requires multiple insertions and retractions, due to the unforeseen stylet deflection caused by the stiff muscle tissue that is traversed. In this paper, we develop a novel tendon-actuated deflectable stylet equipped with MR active-tracking coils that may enhance brachytherapy treatment outcomes by allowing accurate stylet trajectory control. Herein we present the design concept and fabrication method, followed by the kinematic and mechanics models of the deflectable stylet. The hardware and theoretical models are extensively validated via benchtop and MRI-guided characterization. At insertion depths of 60 mm, benchtop phantom targeting tests provided a targeting error of 1. 23 ± 0. 47 mm, and porcine tissue targeting tests provided a targeting error of 1. 65 ± 0. 64 mm, after only a single insertion. MR-guided experiments indicate that the stylet can be safely and accurately located within the MRI environment.
Characterization of a packaged triboelectric harvester under simulated gait loading for total knee replacement
Load sensing total knee replacement (TKR) implants are useful tools for monitoring prosthesis health and providing quantitative data to support patient claims of pain or instability. However, powering such devices throughout the entire life of the knee replacement is a challenge, and self-powered telemetry energy harvesting is an attractive solution. In this study, we implemented vertical contact mode triboelectric energy harvesters inside a knee implant package to generate the power required for embedded digitization and communications circuitry. The harvesters produce small-scale electric power from physiologically relevant loads transmitted through the knee. Experiments were performed on a joint motion simulator with an instrumented package prototype between the polyethylene bearing and tibial tray. The amplitude and the pattern of the power output varied with the input loadings. Under sinusoidal loading the maximum apparent power harvested was around 7W at (50-2000)N whereas, under vertical compressive gait loading the harvesters generated around 10W at average human knee loads of (151-1950)N and 20W when the maximum applied load was increased by 25%. Full six degrees of freedom (6-DoF) gait load/motions at 0.67Hz produced 50% less power due to the slower loading rate. The results show the potential of developing a triboelectric energy harvesting-based self-powered instrumented knee implant for long-term knee joint force measurement.
Design Principles for Compact, Backdrivable Actuation in Partial-Assist Powered Knee Orthoses
This paper presents the design and validation of a backdrivable powered knee orthosis for partial assistance of lower-limb musculature, which aims to facilitate daily activities in individuals with musculoskeletal disorders. The actuator design is guided by design principles that prioritize backdrivability, output torque, and compactness. First, we show that increasing the motor diameter while reducing the gear ratio for a fixed output torque ultimately reduces the reflected inertia (and thus backdrive torque). We also identify a tradeoff with actuator torque density that can be addressed by improving the motor's thermal environment, motivating our design of a custom Brushless DC motor with encapsulated windings. Finally, by designing a 7:1 planetary gearset directly into the stator, the actuator has a high package factor that reduces size and weight. Benchtop tests verify that the custom actuator can produce at least 23.9 Nm peak torque and 12.78 Nm continuous torque, yet has less than 2.68 Nm backdrive torque during walking conditions. Able-bodied human subjects experiments (N=3) demonstrate reduced quadriceps activation with bilateral orthosis assistance during lifting-lowering, sit-to-stand, and stair climbing. The minimal transmission also produces negligible acoustic noise.
Investigation of Micro-motion Kinematics of Continuum Robots for Volumetric OCT and OCT-guided Visual Servoing
Continuum robots (CR) have been recently shown capable of micron-scale motion resolutions. Such motions are achieved through equilibrium modulation using for altering either internal preload forces or changing the cross-sectional stiffness along the length of a continuum robot. Previously reported, but unexplained, turning point behavior is modeled using two approaches. An energy minimization approach is first used to explain the source of this behavior. Subsequently, a kinematic model using internal constraints in multi-backbone CRs is used to replicate this turning point behavior. An approach for modeling the micro-motion differential kinematics is presented using experimental data based on the solution of a system of linear matrix equations. This approach provides a closed-form approximation of the empirical micro-motion kinematics and could be easily used for real-time control. A motivating application of image-based biopsy using 3D optical coherence tomography (OCT) is envisioned and demonstrated in this paper. A system integration for generating OCT volumes by sweeping a custom B-mode OCT probe is presented. Results showing high accuracy in obtaining 3D OCT measurements are shown using a commercial OCT probe. Qualitative results using a miniature probe integrated within the robot are also shown. Finally, closed-loop visual servoing using OCT data is demonstrated for guiding a needle into an agar channel. Results of this paper present what we believe is the first embodiment of a continuum robot capable of micro and macro motion control for 3D OCT imaging. This approach can support the development of new technologies for CRs capable of surgical intervention and micro-motion for ultra-precision tasks.
Automated Retinal Vein Cannulation on Silicone Phantoms Using Optical-Coherence-Tomography-Guided Robotic Manipulations
Retinal vein occlusion is one of the most common causes of vision loss, occurring when a blood clot or other obstruction occludes a retinal vein. A potential remedy for retinal vein occlusion is retinal vein cannulation, a surgical procedure that involves infusing the occluded vein with a fibrinolytic drug to restore blood flow through the vascular lumen. This work presents an image-guided robotic system capable of performing automated cannulation on silicone retinal vein phantoms. The system is integrated with an optical coherence tomography probe and camera to provide visual feedback to guide the robotic system. Through automation, the developed system targets a vein phantom to within 20 μm and automatically cannulates and infuses the vascular lumen with dyed water. The system was evaluated through 30 experimental trials and shown to be capable of performing automated cannulation of retinal vein phantoms with no reported cases of failure.
Image processing metrics for phase identification of a multiaxis MEMS scanner used in single pixel imaging
This paper applies image processing metrics to tracking of perturbations in mechanical phase delay in a multi-axis microelectromechanical system (MEMS) scanner. The compact mirror is designed to scan a laser beam in a Lissajous pattern during the collection of endoscopic confocal fluorescence images, but environmental perturbations to the mirror dynamics can lead to image registration errors and blurry images. A binarized, threshold-based blur metric and variance-based sharpness metric are introduced for detecting scanner phase delay. Accuracy of local optima of the metric for identification of phase delay is examined, and relative advantages for processing accuracy and computational complexity are assessed. Image reconstruction is demonstrated using both generic images and sample tissue images, with significant improvement in image quality for tissue imaging. Implications of non-ideal Lissajous scan effects on phase detection and image reconstruction are discussed.
Stochastic Force-based Insertion Depth and Tip Position Estimations of Flexible FBG-Equipped Instruments in Robotic Retinal Surgery
Vitreoretinal surgery is among the most delicate surgical tasks during which surgeon hand tremor may severely attenuate surgeon performance. Robotic assistance has been demonstrated to be beneficial in diminishing hand tremor. Among the requirements for reliable assistance from the robot is to provide precise measurements of system states e.g. sclera forces, tool tip position and tool insertion depth. Providing this and other sensing information using existing technology would contribute towards development and implementation of autonomous robot-assisted tasks in retinal surgery such as laser ablation, guided suture placement/assisted needle vessel cannulation, among other applications. In the present work, we use a state-estimating Kalman filtering (KF) to improve the tool tip position and insertion depth estimates, which used to be purely obtained by robot forward kinematics (FWK) and direct sensor measurements, respectively. To improve tool tip localization, in addition to robot FWK, we also use sclera force measurements along with beam theory to account for tool deflection. For insertion depth, the robot FWK is combined with sensor measurements for the cases where sensor measurements are not reliable enough. The improved tool tip position and insertion depth measurements are validated using a stereo camera system through preliminary experiments and a case study. The results indicate that the tool tip position and insertion depth measurements are significantly improved by 77% and 94% after applying KF, respectively.
A Surgical Robotic System for Treatment of Pelvic Osteolysis Using an FBG-Equipped Continuum Manipulator and Flexible Instruments
This paper presents the development and experimental evaluation of a redundant robotic system for the less-invasive treatment of osteolysis (bone degradation) behind the acetabular implant during total hip replacement revision surgery. The system comprises a rigid-link positioning robot and a Continuum Dexterous Manipulator (CDM) equipped with highly flexible debriding tools and a Fiber Bragg Grating (FBG)-based sensor. The robot and the continuum manipulator are controlled concurrently via an optimization-based framework using the Tip Position Estimation (TPE) from the FBG sensor as feedback. Performance of the system is evaluated on a setup that consists of an acetabular cup and saw-bone phantom simulating the bone behind the cup. Experiments consist of performing the surgical procedure on the simulated phantom setup. CDM TPE using FBGs, target location placement, cutting performance, and the concurrent control algorithm capability in achieving the desired tasks are evaluated. Mean and standard deviation of the CDM TPE from the FBG sensor and the robotic system are 0.50 mm, and 0.18 mm, respectively. Using the developed surgical system, accurate positioning and successful cutting of desired straight-line and curvilinear paths on saw-bone phantoms behind the cup with different densities are demonstrated. Compared to the conventional rigid tools, the workspace reach behind the acetabular cup is 2.47 times greater when using the developed robotic system.
Automatic Light Pipe Actuating System for Bimanual Robot-Assisted Retinal Surgery
Retinal surgery is a bimanual operation in which surgeons operate with an instrument in their dominant hand (more capable hand) and simultaneously hold a light pipe (illuminating pipe) with their non-dominant hand (less capable hand) to provide illumination inside the eye. Manually holding and adjusting the light pipe places an additional burden on the surgeon and increases the overall complexity of the procedure. To overcome these challenges, a robot-assisted automatic light pipe actuating system is proposed. A customized light pipe with force-sensing capability is mounted at the end effector of a follower robot and is actuated through a hybrid force-velocity controller to automatically illuminate the target area on the retinal surface by pivoting about the scleral port (incision on the sclera). Static following-accuracy evaluation and dynamic light tracking experiments are carried out. The results show that the proposed system can successfully illuminate the desired area with negligible offset (the average offset is 2.45 mm with standard deviation of 1.33 mm). The average scleral forces are also below a specified threshold (50 mN). The proposed system not only can allow for increased focus on dominant hand instrument control, but also could be extended to three-arm procedures (two surgical instruments held by surgeon plus a robot-holding light pipe) in retinal surgery, potentially improving surgical efficiency and outcome.
Mechatronic Design of a Two-Arm Concentric Tube Robot System for Rigid Neuroendoscopy
Open surgical approaches are still often employed in neurosurgery, despite the availability of neuroendoscopic approaches that reduce invasiveness. The challenge of maneuvering instruments at the tip of the endoscope makes neuroendoscopy demanding for the physician. The only way to aim tools passed through endoscope ports is to tilt the entire endoscope; but, tilting compresses brain tissue through which the endoscope passes and can damage it. Concentric tube robots can provide necessary dexterity without endoscope tilting, while passing through existing ports in the endoscope and carrying surgical tools in their inner lumen. In this paper we describe the mechatronic design of a new concentric tube robot that can deploy two concentric tube manipulators through a standard neuroendoscope. The robot uses a compact differential drive and features embedded motor control electronics and redundant position sensors for safety. In addition to the mechatronic design of this system, this paper contributes experimental validation in the context of colloid cyst removal, comparing our new robotic system to standard manual endoscopy in a brain phantom. The robotic approach essentially eliminated endoscope tilt during the procedure (17.09° for the manual approach vs. 1.16° for the robotic system). The robotic system also enables a single surgeon to perform the procedure - typically in a manual approach one surgeon aims the endoscope and another operates the tools delivered through its ports.
Motion Estimation for a Compact Electrostatic Microscanner via Shared Driving and Sensing Electrodes in Endomicroscopy
We present a method to estimate high frequency rotary motion of a highly compact electrostatic micro-scanner using the same electrodes for both actuation and sensing. The accuracy of estimated rotary motion is critical for reducing blur and distortion in image reconstruction applications with the micro-scanner given its changing dynamics due to perturbations such as temperature. To overcome the limitation that no dedicated sensing electrodes are available in the proposed applications due to size constraints, the method adopts electromechanical amplitude modulation (EAM) to separate motion signal from parasitic capacitance feedthrough, and a novel non-linear measurement model is derived to characterize the relationship between large out-of-plane angular motion and circuit output. To estimate motion, an extended Kalman filter (EKF) and an unscented Kalman filter (UKF) are implemented, incorporating a process model based on the micro-scanner's parametric resonant dynamics and the measurement model. Experimental results show that compared to estimation without using the measurement model, our method is able to improve the rotary motion estimation accuracy of the micro-scanner significantly, with a reduction of root-mean-square error (RMSE) in phase shift of 86.1%, and a reduction of RMSE in angular position error of 78.5 %.
Design of a Semi-Powered Stance-Control Swing-Assist Transfemoral Prosthesis
This paper describes the design of a new type of knee prosthesis called a stance-control, swing-assist (SCSA) knee prosthesis. The device is motivated by the recognition that energetically-passive stance-controlled microprocessor-controlled knees (SCMPKs) offer many desirable characteristics, such as quiet operation, low weight, high-impedance stance support, and an inertially-driven swing-phase motion. Due to the latter, however, SCMPKs are also highly susceptible to swing-phase perturbations, which can increase the likelihood of falling. The SCSA prosthesis supplements the behavior of an SCMPK with a small motor that maintains the low output impedance of the SCMPK swing state, while adding a supplemental closed-loop controller around it. This paper elaborates upon the motivation for the SCSA prosthesis, describes the design of a prosthesis prototype, and provides human-subject testing data that demonstrates potential device benefits relative to an SCMPK during both non-perturbed and perturbed walking.
A Fully Actuated Robotic Assistant for MRI-Guided Precision Conformal Ablation of Brain Tumors
This paper reports the development of a fully actuated robotic assistant for magnetic resonance imaging (MRI)-guided precision conformal ablation of brain tumors using an interstitial high intensity needle-based therapeutic ultrasound (NBTU) ablator probe. The robot is designed with an eight degree-of-freedom (DOF) remote center of motion (RCM) manipulator driven by piezoelectric actuators, five for aligning the ultrasound thermal ablator to the target lesions and three for inserting and orienting the ablator and its cannula to generate a desired ablation profile. The 8-DOF fully actuated robot can be operated in the scanner bore during imaging; thus, alleviating the need of moving the patient in or out of the scanner during the procedure, and therefore potentially reducing the procedure time and streamlining the workflow. The free space positioning accuracy of the system is evaluated with the OptiTrack motion capture system, demonstrating the root mean square (RMS) error of the tip position to be 1.11±0.43mm. The system targeting accuracy in MRI is assessed with phantom studies, indicating the RMS errors of the tip position to be 1.45±0.66mm and orientation to be 1.53±0.69°. The feasibility of the system to perform thermal ablation is validated through a preliminary ex-vivo tissue study with position error less than 4.3mm and orientation error less than 4.3°.