HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES

Spatial and temporal variability of event runoff characteristics in a small agricultural catchment
Chen X, Parajka J, Széles B, Strauss P and Blöschl G
The objective of this study is to investigate the factors that control event runoff characteristics at the small catchment scale. The study area is the Hydrological Open Air Laboratory, Lower Austria. Event runoff coefficient (Rc), recession time constant (Tc) and peak discharge (Qp) are estimated from hourly discharge and precipitation data for 298 events in the period 2013-2015. The results show that the Rc and their variability tend to be largest for the tile drainages (mean Rc = 0.09) and the main outlet (mean Rc = 0.08) showing larger Rc in January/February and smaller Rc in July/August. Tc does not vary much between the systems and tends to be largest at the main outlet (mean Tc = 6.5 h) and smallest for the tile drainages (mean Tc = 4.5 h). Groundwater levels explain the temporal variability of Rc and Tc more than soil moisture or precipitation, suggesting a role of shallow flow paths.
An approach to measure parameter sensitivity in watershed hydrological modelling
Ranatunga T, Tong STY and Yang YJ
Hydrological responses vary spatially and temporally according to watershed characteristics. In this study, the hydrological models that we developed earlier for the Little Miami River (LMR) and Las Vegas Wash (LVW) watersheds in the USA were used for detailed sensitivity analyses. To compare the relative sensitivities of the hydrological parameters of these two models, we used normalized root mean square error (NRMSE). By combining the NRMSE index with the flow duration curve analysis, we derived an approach to measure parameter sensitivities under different flow regimes. Results show that the parameters related to groundwater are highly sensitive in the LMR watershed, whereas the LVW watershed is primarily sensitive to near-surface and impervious parameters. The high and medium flows are more impacted by most of the parameters. The low flow regime was highly sensitive to groundwater-related parameters. Moreover, our approach is found to be useful in facilitating model development and calibration.
Comparison of three types of laser optical disdrometers under natural rainfall conditions
Johannsen LL, Zambon N, Strauss P, Dostal T, Neumann M, Zumr D, Cochrane TA, Blöschl G and Klik A
Optical disdrometers can be used to estimate rainfall erosivity; however, the relative accuracy of different disdrometers is unclear. This study compared three types of optical laser-based disdrometers to quantify differences in measured rainfall characteristics and to develop correction factors for kinetic energy (KE). Two identical PWS100 (Campbell Scientific), one Laser Precipitation Monitor (Thies Clima) and a first-generation Parsivel (OTT) were collocated with a weighing rain gauge (OTT Pluvio) at a site in Austria. All disdrometers underestimated total rainfall compared to the rain gauge with relative biases from 2% to 29%. Differences in drop size distribution and velocity resulted in different KE estimates. By applying a linear regression to the KE-intensity relationship of each disdrometer, a correction factor for KE between the disdrometers was developed. This factor ranged from 1.15 to 1.36 and allowed comparison of KE between different disdrometer types despite differences in measured drop size and velocity.
Groundwater storage change detection from and GRACE-based estimates in major river basins across India
Bhanja SN, Mukherjee A and Rodell M
India has been the subject of many recent groundwater studies due to the rapid depletion of groundwater in large parts of the country. However, few if any of these studies have examined groundwater storage conditions in all of India's river basins individually. Herein we assess groundwater storage changes in all 22 of India's major river basins using data from 3420 observation locations for the period 2003-2014. One-month and 12-month standardized precipitation index measures (SPI-1 and SPI-12) indicate fluctuations in the long-term pattern. The Ganges and Brahmaputra basins experienced long-term decreasing trends in precipitation in both 1961-2014 and the study period, 2003-2014. Indeterminate or increasing precipitation trends occurred in other basins. Satellite-based and groundwater storage time series exhibited similar patterns, with increases in most of the basins. However, diminishing groundwater storage (at rates of >0.4 km/year) was revealed in the Ganges-Brahmaputra river basin based on observations, which is particularly important due to its agricultural productivity.