Health Care Management Science

Mechanistic modeling of social conditions in disease-prediction simulations via copulas and probabilistic graphical models: HIV case study
Khosheghbal A, Haas PJ and Gopalappa C
As social and economic conditions are key determinants of HIV, the United States 'National HIV/AIDS Strategy (NHAS)', in addition to care and treatment, aims to address mental health, unemployment, food insecurity, and housing instability, as part of its strategic plan for the 'Ending the HIV Epidemic' initiative. Although mechanistic models of HIV play a key role in evaluating intervention strategies, social conditions are typically not part of the modeling framework. Challenges include the unavailability of coherent statistical data for social conditions and behaviors. We developed a method, combining undirected graphical modeling with copula methods, to integrate disparate data sources, to estimate joint probability distributions for social conditions and behaviors. We incorporated these in a national-level network model, Progression and Transmission of HIV (PATH 4.0), to simulate behaviors as functions of social conditions and HIV transmissions as a function of behaviors. As a demonstration for the potential applications of such a model, we conducted two hypothetical what-if intervention analyses to estimate the impact of an ideal 100% efficacious intervention strategy. The first analysis modeled care behavior (using viral suppression as proxy) as a function of depression, neighborhood, housing, poverty, education, insurance, and employment status. The second modeled sexual behaviors (number of partners and condom-use) as functions of employment, housing, poverty, and education status, among persons who exchange sex. HIV transmissions and disease progression were then simulated as functions of behaviors to estimate incidence reductions. Social determinants are key drivers of many infectious and non-infectious diseases. Our work enables the development of decision support tools to holistically evaluate the syndemics of health and social inequity.
Assessing the performance of Portuguese public hospitals before and during COVID-19 outbreak, with optimistic and pessimistic benchmarking approaches
Vara GM, Gomes MC and Ferreira DC
The COVID-19 pandemic had a profound impact on the tertiary sector, particularly in healthcare, which faced unprecedented demand despite the existence of limited resources, such as hospital beds, staffing resources, and funding. The magnitude and global scale of this crisis provide a compelling incentive to thoroughly analyse its effects. This study aims to identify best practices within the Portuguese national healthcare service, with the goal of improving preparedness for future crises and informing policy decisions. Using a Benefit-of-the-Doubt (BoD) approach, this research constructs composite indicators to assess the pandemic's impact on the Portuguese public hospitals. The study analyzes monthly data from 2017 to May 2022, highlighting critical trends and performance fluctuations during this period. The findings reveal that each COVID-19 wave led to a decline in hospital performance, with the first wave being the most severe due to a lack of preparedness. Furthermore, the pandemic worsened the disparities among examined hospitals. Pre-pandemic top performers in each group improved their performance and were more consistently recognized as benchmarks, with their average benchmark frequency increasing from 66.5% to 83.5%. These top entities demonstrated greater resilience and adaptability, further distancing themselves from underperforming hospitals, which saw declines in both performance scores and benchmark frequency, widening the performance gap. The superior performance of top entities can be attributed to pre-existing strategic tools and contextual factors that enabled them to withstand the pandemic's challenges more effectively. HIGHLIGHTS: • The pandemic aggravated the differences between the hospitals examined. • The top-performing entities further distanced themselves from the remaining entities after the pandemic • Entities considered benchmarks before the pandemic remained the same, and became even more consistent during the pandemic. • The top-performing entities achieved higher scores than their pre-pandemic performance levels. • Benchmarking models for composite indicators with diverse decision-making preferences, and treatment of imperfect knowledge of data.
Evaluating machine learning model bias and racial disparities in non-small cell lung cancer using SEER registry data
Trentz C, Engelbart J, Semprini J, Kahl A, Anyimadu E, Buatti J, Casavant T, Charlton M and Canahuate G
Despite decades of pursuing health equity, racial and ethnic disparities persist in healthcare in America. For cancer specifically, one of the leading observed disparities is worse mortality among non-Hispanic Black patients compared to non-Hispanic White patients across the cancer care continuum. These real-world disparities are reflected in the data used to inform the decisions made to alleviate such inequities. Failing to account for inherently biased data underlying these observations could intensify racial cancer disparities and lead to misguided efforts that fail to appropriately address the real causes of health inequity.
A reinforcement learning approach for the online dynamic home health care scheduling problem
Ta-Dinh Q, Pham TS, Hà MH and Rousseau LM
Over recent years, home health care has gained significant attention as an efficient solution to the increasing demand for healthcare services. Home health care scheduling is a challenging problem involving multiple complicated assignments and routing decisions subject to various constraints. The problem becomes even more challenging when considered on a rolling horizon with stochastic patient requests. This paper discusses the Online Dynamic Home Health Care Scheduling Problem (ODHHCSP), in which a home health care agency has to decide whether to accept or reject a patient request and determine the visit schedule and routes in case of acceptance. The objective of the problem is to maximize the number of patients served, given the limited resources. When the agency receives a patient's request, a decision must be made on the spot, which poses many challenges, such as stochastic future requests or a limited time budget for decision-making. In this paper, we model the problem as a Markov decision process and propose a reinforcement learning (RL) approach. The experimental results show that the proposed approach outperforms other algorithms in the literature in terms of solution quality. In addition, a constant runtime of less than 0.001 seconds for each decision makes the approach especially suitable for an online setting like our problem.
A novel two-stage network data envelopment analysis model for kidney allocation problem under medical and logistical uncertainty: a real case study
Hamidzadeh F, Pishvaee MS and Zarrinpoor N
Organ transplantation is one of the most complicated and challenging treatments in healthcare systems. Despite the significant medical advancements, many patients die while waiting for organ transplants because of the noticeable differences between organ supply and demand. In the organ transplantation supply chain, organ allocation is the most significant decision during the organ transplantation procedure, and kidney is the most widely transplanted organ. This research presents a novel method for assessing the efficiency and ranking of qualified organ-patient pairs as decision-making units (DMUs) for kidney allocation problem in the existence of COVID-19 pandemic and uncertain medical and logistical data. To achieve this goal, two-stage network data envelopment analysis (DEA) and credibility-based chance constraint programming (CCP) are utilized to develop a novel two-stage fuzzy network data envelopment analysis (TSFNDEA) method. The main benefits of the developed method can be summarized as follows: considering internal structures in kidney allocation system, investigating both medical and logistical aspects of the problem, the capability of expanding to other network structures, and unique efficiency decomposition under uncertainty. Moreover, in order to evaluate the validity and applicability of the proposed approach, a validation algorithm utilizing a real case study and different confidence levels is used. Finally, the numerical results indicate that the developed approach outperforms the existing kidney allocation system.
Optimization of testing protocols to screen for COVID-19: a multi-objective model
Moheb-Alizadeh H, Warsing DP, Kouri RE, Taghiyeh S and Handfield RB
In this paper we develop a new multi-objective simulated annealing (MOSA) algorithm to generate optimal testing protocols for infectious diseases, using the COVID-19 pandemic as our context. A SEIR (susceptible-exposed-infected-recovered) epidemiological model is embedded as the computational platform for our MOSA algorithm to optimize testing protocols for screening across three joint objectives: minimum cost of test materials, minimum total infections over the testing horizon, and minimum number of false negatives over the horizon. We demonstrate the application of this optimization tool to recommend screening protocols for K-12 school districts in the U.S. State of North Carolina. Our approach is scalable by population coverage and can be employed at the level of individual school districts or regional collections of districts, individual schools or collections of schools across a district, business sites, or nursing homes, among other congregate settings where individuals may be screened prior to gaining entry to the site. The algorithm can be solved two ways, generating either independent optimal protocols across individual testing locations, or a common protocol covering all locations in the collection of testing sites. Our findings can be used to inform policy decisions to guide the development of effective testing strategies for controlling the spread of COVID-19 or other pandemic diseases in a wide range of congregate settings across various geographic regions.
Health care management science for underserved populations
Megiddo I, Deo S, Morton A and Silal S
Forecasting to support EMS tactical planning: what is important and what is not
Rezaei M and Ingolfsson A
Forecasting emergency medical service (EMS) call volumes is critical for resource allocation and planning. The development of many commercial and free software packages has made a variety of forecasting methods accessible. Practitioners, however, are left with little guidance on selecting the most appropriate method for their needs. Using 5 years of data from 3 cities in Alberta, we compute exponential smoothing and benchmark forecasts for 8-hour periods for each ambulance station catchment area and with a forecast horizon of two weeks-a spatio-temporal resolution appropriate for tactical planning. The methods that we consider differ on three spectra: the number and type of time-series components, whether forecasts are computed individually or jointly, and the way in which forecasts at a specific resolution are converted to forecasts at the resolution of interest. We find that it is important to include a weekly seasonal component when forecasting EMS demand. Multiplicative seasonality, however, shows no benefit over additive seasonality. Adding other time-series components (e.g., trend, ARMA errors, Box-Cox transformation) does not improve performance. Spatial resolutions of station catchment area and lower, and temporal resolution of 4-24 hours perform similarly. We adapt an existing hierarchical forecasting framework to a two-dimensional spatio-temporal hierarchy, but find that hierarchical reconciliation of forecasts does not improve performance at the forecast resolution of interest for tactical planning. Neither does jointly forecasting time series. We show that added complexity does not materially improve forecasting performance. The simple methods that we find perform well are easy to implement and interpret, making implementation in practice more likely. In a simulation study we alter the empirical weekly patterns and demonstrate how extreme differences between the weekly seasonality patterns of different regions cause hierarchically-reconciled bottom-up approaches to outperform top-down approaches.
Managing low-acuity patients in an Emergency Department through simulation-based multiobjective optimization using a neural network metamodel
Boresta M, Giovannelli T and Roma M
This paper deals with Emergency Department (ED) fast-tracks for low-acuity patients, a strategy often adopted to reduce ED overcrowding. We focus on optimizing resource allocation in minor injuries units, which are the ED units that can treat low-acuity patients, with the aim of minimizing patient waiting times and ED operating costs. We formulate this problem as a general multiobjective simulation-based optimization problem where some of the objectives are expensive black-box functions that can only be evaluated through a time-consuming simulation. To efficiently solve this problem, we propose a metamodeling approach that uses an artificial neural network to replace a black-box objective function with a suitable model. This approach allows us to obtain a set of Pareto optimal points for the multiobjective problem we consider, from which decision-makers can select the most appropriate solutions for different situations. We present the results of computational experiments conducted on a real case study involving the ED of a large hospital in Italy. The results show the reliability and effectiveness of our proposed approach, compared to the standard approach based on derivative-free optimization.
Editorial: management science for pandemic prevention, preparedness, and response
Aprahamian H, Verter V and Zargoush M
Enhancing affordability and profit in a non-cooperative, coordinated, hypothetical pediatric vaccine market via sequential optimization
Alves-Maciel B and Proano RA
This study considers a hypothetical global pediatric vaccine market where multiple coordinating entities make optimal procurement decisions on behalf of countries with different purchasing power. Each entity aims to improve affordability for its countries while maintaining a profitable market for vaccine producers. This study analyzes the effect of several factors on affordability and profitability, including the number of non-cooperative coordinating entities making procuring decisions, the number of market segments in which countries are grouped for tiered pricing purposes, how producers recover fixed production costs, and the procuring order of the coordinating entities. The study relies on a framework where entities negotiate sequentially with vaccine producers using a three-stage optimization process that solves a MIP and two LP problems to determine the optimal procurement plans and prices per dose that maximize savings for the entities' countries and profit for the vaccine producers. The study's results challenge current vaccine market dynamics and contribute novel alternative strategies to orchestrate the interaction of buyers, producers, and coordinating entities for enhancing affordability in a non-cooperative market. Key results show that the order in which the coordinating entities negotiate with vaccine producers and how the latter recuperate their fixed cost investments can significantly affect profitability and affordability. Furthermore, low-income countries can meet their demands more affordably by procuring vaccines through tiered pricing via entities coordinating many market segments. In contrast, upper-middle and high-income countries increase their affordability by procuring through entities with fewer and more extensive market segments. A procurement order that prioritizes entities based on the descending income level of their countries offers higher opportunities to increase affordability and profit when producers offer volume discounts.
A novel approach to forecast surgery durations using machine learning techniques
Caserta M and Romero AG
This study presents a methodology for predicting the duration of surgical procedures using Machine Learning (ML). The methodology incorporates a new set of predictors emphasizing the significance of surgical team dynamics and composition, including experience, familiarity, social behavior, and gender diversity. By applying ML techniques to a comprehensive dataset of over 77,000 surgeries, we achieved a 24% improvement in the mean absolute error (MAE) over a model that mimics the current approach of the decision maker. Our results also underscore the critical role of surgeon experience and team composition dynamics in enhancing prediction accuracy. These advancements can lead to more efficient operational planning and resource allocation in hospitals, potentially reducing downtime in operating rooms and improving healthcare delivery.
A systematic literature review of predicting patient discharges using statistical methods and machine learning
Pahlevani M, Taghavi M and Vanberkel P
Discharge planning is integral to patient flow as delays can lead to hospital-wide congestion. Because a structured discharge plan can reduce hospital length of stay while enhancing patient satisfaction, this topic has caught the interest of many healthcare professionals and researchers. Predicting discharge outcomes, such as destination and time, is crucial in discharge planning by helping healthcare providers anticipate patient needs and resource requirements. This article examines the literature on the prediction of various discharge outcomes. Our review discovered papers that explore the use of prediction models to forecast the time, volume, and destination of discharged patients. Of the 101 reviewed papers, 49.5% looked at the prediction with machine learning tools, and 50.5% focused on prediction with statistical methods. The fact that knowing discharge outcomes in advance affects operational, tactical, medical, and administrative aspects is a frequent theme in the papers studied. Furthermore, conducting system-wide optimization, predicting the time and destination of patients after discharge, and addressing the primary causes of discharge delay in the process are among the recommendations for further research in this field.
Multi-resource allocation and care sequence assignment in patient management: a stochastic programming approach
Yao X, Shehadeh KS and Padman R
To mitigate outpatient care delivery inefficiencies induced by resource shortages and demand heterogeneity, this paper focuses on the problem of allocating and sequencing multiple medical resources so that patients scheduled for clinical care can experience efficient and coordinated care with minimum total waiting time. We leverage highly granular location data on people and medical resources collected via Real-Time Location System technologies to identify dominant patient care pathways. A novel two-stage Stochastic Mixed Integer Linear Programming model is proposed to determine the optimal patient sequence based on the available resources according to the care pathways that minimize patients' expected total waiting time. The model incorporates the uncertainty in care activity duration via sample average approximation.We employ a Monte Carlo Optimization procedure to determine the appropriate sample size to obtain solutions that provide a good trade-off between approximation accuracy and computational time. Compared to the conventional deterministic model, our proposed model would significantly reduce waiting time for patients in the clinic by 60%, on average, with acceptable computational resource requirements and time complexity. In summary, this paper proposes a computationally efficient formulation for the multi-resource allocation and care sequence assignment optimization problem under uncertainty. It uses continuous assignment decision variables without timestamp and position indices, enabling the data-driven solution of problems with real-time allocation adjustment in a dynamic outpatient environment with complex clinical coordination constraints.
The benefits (or detriments) of adapting to demand disruptions in a hospital pharmacy with supply chain disruptions
Czerniak LL, Lavieri MS, Daskin MS, Byon E, Renius K, Sweet BV, Leja J and Tupps MA
Supply chain disruptions and demand disruptions make it challenging for hospital pharmacy managers to determine how much inventory to have on-hand. Having insufficient inventory leads to drug shortages, while having excess inventory leads to drug waste. To mitigate drug shortages and waste, hospital pharmacy managers can implement inventory policies that account for supply chain disruptions and adapt these inventory policies over time to respond to demand disruptions. Demand disruptions were prevalent during the Covid-19 pandemic. However, it remains unclear how a drug's shortage-waste weighting (i.e., concern for shortages versus concern for waste) as well as the duration of and time between supply chain disruptions influence the benefits (or detriments) of adapting to demand disruptions. We develop an adaptive inventory system (i.e., inventory policies change over time) and conduct an extensive numerical analysis using real-world demand data from the University of Michigan's Central Pharmacy to address this research question. For a fixed mean duration of and mean time between supply chain disruptions, we find a drug's shortage-waste weighting dictates the magnitude of the benefits (or detriments) of adaptive inventory policies. We create a ranking procedure that provides a way of discerning which drugs are of most concern and illustrates which policies to update given that a limited number of inventory policies can be updated. When applying our framework to over 300 drugs, we find a decision-maker needs to update a very small proportion of drugs (e.g., ) at any point in time to get the greatest benefits of adaptive inventory policies.
Examining chronic kidney disease screening frequency among diabetics: a POMDP approach
Wu CC, Cao Y, Suen SC and Lin E
Forty percent of diabetics will develop chronic kidney disease (CKD) in their lifetimes. However, as many as 50% of these CKD cases may go undiagnosed. We developed screening recommendations stratified by age and previous test history for individuals with diagnosed diabetes and unknown proteinuria status by race and gender groups. To do this, we used a Partially Observed Markov Decision Process (POMDP) to identify whether a patient should be screened at every three-month interval from ages 30-85. Model inputs were drawn from nationally-representative datasets, the medical literature, and a microsimulation that integrates this information into group-specific disease progression rates. We implement the POMDP solution policy in the microsimulation to understand how this policy may impact health outcomes and generate an easily-implementable, non-belief-based approximate policy for easier clinical interpretability. We found that the status quo policy, which is to screen annually for all ages and races, is suboptimal for maximizing expected discounted future net monetary benefits (NMB). The POMDP policy suggests more frequent screening after age 40 in all race and gender groups, with screenings 2-4 times a year for ages 61-70. Black individuals are recommended for screening more frequently than their White counterparts. This policy would increase NMB from the status quo policy between $1,000 to  $8,000 per diabetic patient at a willingness-to-pay of $150,000 per quality-adjusted life year (QALY).
Dissatisfaction-considered waiting time prediction for outpatients with interpretable machine learning
Shin J, Lee DA, Kim J, Lim C and Choi BK
Long waiting time in outpatient departments is a crucial factor in patient dissatisfaction. We aim to analytically interpret the waiting times predicted by machine learning models and provide patients with an explanation of the expected waiting time. Here, underestimating waiting times can cause patient dissatisfaction, so preventing this in predictive models is necessary. To address this issue, we propose a framework considering dissatisfaction for estimating the waiting time in an outpatient department. In our framework, we leverage asymmetric loss functions to ensure robustness against underestimation. We also propose a dissatisfaction-aware asymmetric error score (DAES) to determine an appropriate model by considering the trade-off between underestimation and accuracy. Finally, Shapley additive explanation (SHAP) is applied to interpret the relationship trained by the model, enabling decision makers to use this information for improving outpatient service operations. We apply our framework in the endocrinology metabolism department and neurosurgery department in one of the largest hospitals in South Korea. The use of asymmetric functions prevents underestimation in the model, and with the proposed DAES, we can strike a balance in selecting the best model. By using SHAP, we can analytically interpret the waiting time in outpatient service (e.g., the length of the queue affects the waiting time the most) and provide explanations about the expected waiting time to patients. The proposed framework aids in improving operations, considering practical application in hospitals for real-time patient notification and minimizing patient dissatisfaction. Given the significance of managing hospital operations from the perspective of patients, this work is expected to contribute to operations improvement in health service practices.
Strategic placement of volunteer responder system defibrillators
Buter R, Nazarian A, Koffijberg H, Hans EW, Stieglis R, Koster RW and Demirtas D
Volunteer responder systems (VRS) alert and guide nearby lay rescuers towards the location of an emergency. An application of such a system is to out-of-hospital cardiac arrests, where early cardiopulmonary resuscitation (CPR) and defibrillation with an automated external defibrillator (AED) are crucial for improving survival rates. However, many AEDs remain underutilized due to poor location choices, while other areas lack adequate AED coverage. In this paper, we present a comprehensive data-driven algorithmic approach to optimize deployment of (additional) public-access AEDs to be used in a VRS. Alongside a binary integer programming (BIP) formulation, we consider two heuristic methods, namely Greedy and Greedy Randomized Adaptive Search Procedure (GRASP), to solve the gradual Maximal Covering Location (MCLP) problem with partial coverage for AED deployment. We develop realistic gradually decreasing coverage functions for volunteers going on foot, by bike, or by car. A spatial probability distribution of cardiac arrest is estimated using kernel density estimation to be used as input for the models and to evaluate the solutions. We apply our approach to 29 real-world instances (municipalities) in the Netherlands. We show that GRASP can obtain near-optimal solutions for large problem instances in significantly less time than the exact method. The results indicate that relocating existing AEDs improves the weighted average coverage from 36% to 49% across all municipalities, with relative improvements ranging from 1% to 175%. For most municipalities, strategically placing 5 to 10 additional AEDs can already provide substantial improvements.
Leveraging the potential of the German operating room benchmarking initiative for planning: A ready-to-use surgical process data set
Korzhenevich G and Zander A
We present a freely available data set of surgical case mixes and surgery process duration distributions based on processed data from the German Operating Room Benchmarking initiative. This initiative collects surgical process data from over 320 German, Austrian, and Swiss hospitals. The data exhibits high levels of quantity, quality, standardization, and multi-dimensionality, making it especially valuable for operating room planning in Operations Research. We consider detailed steps of the perioperative process and group the data with respect to the hospital's level of care, the surgery specialty, and the type of surgery patient. We compare case mixes for different subgroups and conclude that they differ significantly, demonstrating that it is necessary to test operating room planning methods in different settings, e.g., using data sets like ours. Further, we discuss limitations and future research directions. Finally, we encourage the extension and foundation of new operating room benchmarking initiatives and their usage for operating room planning.
A study of "left against medical advice" emergency department patients: an optimized explainable artificial intelligence framework
Ahmed A, Aram KY, Tutun S and Delen D
The issue of left against medical advice (LAMA) patients is common in today's emergency departments (EDs). This issue represents a medico-legal risk and may result in potential readmission, mortality, or revenue loss. Thus, understanding the factors that cause patients to "leave against medical advice" is vital to mitigate and potentially eliminate these adverse outcomes. This paper proposes a framework for studying the factors that affect LAMA in EDs. The framework integrates machine learning, metaheuristic optimization, and model interpretation techniques. Metaheuristic optimization is used for hyperparameter optimization-one of the main challenges of machine learning model development. Adaptive tabu simulated annealing (ATSA) metaheuristic algorithm is utilized for optimizing the parameters of extreme gradient boosting (XGB). The optimized XGB models are used to predict the LAMA outcomes for patients under treatment in ED. The designed algorithms are trained and tested using four data groups which are created using feature selection. The model with the best predictive performance is then interpreted using the SHaply Additive exPlanations (SHAP) method. The results show that best model has an area under the curve (AUC) and sensitivity of 76% and 82%, respectively. The best model was explained using SHAP method.
A machine learning framework for interpretable predictions in patient pathways: The case of predicting ICU admission for patients with symptoms of sepsis
Zilker S, Weinzierl S, Kraus M, Zschech P and Matzner M
Proactive analysis of patient pathways helps healthcare providers anticipate treatment-related risks, identify outcomes, and allocate resources. Machine learning (ML) can leverage a patient's complete health history to make informed decisions about future events. However, previous work has mostly relied on so-called black-box models, which are unintelligible to humans, making it difficult for clinicians to apply such models. Our work introduces PatWay-Net, an ML framework designed for interpretable predictions of admission to the intensive care unit (ICU) for patients with symptoms of sepsis. We propose a novel type of recurrent neural network and combine it with multi-layer perceptrons to process the patient pathways and produce predictive yet interpretable results. We demonstrate its utility through a comprehensive dashboard that visualizes patient health trajectories, predictive outcomes, and associated risks. Our evaluation includes both predictive performance - where PatWay-Net outperforms standard models such as decision trees, random forests, and gradient-boosted decision trees - and clinical utility, validated through structured interviews with clinicians. By providing improved predictive accuracy along with interpretable and actionable insights, PatWay-Net serves as a valuable tool for healthcare decision support in the critical case of patients with symptoms of sepsis.