DRUG DELIVERY

Multi-shell gold nanoparticles functionalized with methotrexate: a novel nanotherapeutic approach for improved antitumoral and antioxidant activity and enhanced biocompatibility
Bostiog DI, Simionescu N, Coroaba A, Marinas IC, Chifiriuc MC, Gradisteanu Pircalabioru G, Maier SS and Pinteala M
Methotrexate (MTX) is a folic acid antagonist routinely used in cancer treatment, characterized by poor water solubility and low skin permeability. These issues could be mitigated by using drug delivery systems, such as functionalized gold nanoparticles (AuNPs), known for their versatility and unique properties. This study aimed to develop multi-shell AuNPs functionalized with MTX for the improvement of MTX antitumoral, antioxidant, and biocompatibility features. Stable phosphine-coated AuNPs were synthesized and functionalized with tailored polyethylene glycol (PEG) and short-branched polyethyleneimine (PEI) moieties, followed by MTX covalent binding. Physicochemical characterization by UV-vis and Fourier-transform infrared spectroscopy (FTIR) spectroscopy, dynamic light scattering (DLS), scanning transmission electron microscopy (STEM), and X-ray photoelectron spectroscopy (XPS) confirmed the synthesis at each step. The antioxidant activity of functionalized AuNPs was determined using DPPH radical scavenging assay, ferric ions' reducing antioxidant power (FRAP), and cupric reducing antioxidant capacity (CUPRAC) assays. Biocompatibility and cytotoxicity were assessed using MTT and LDH assays on HaCaT human keratinocytes and CAL27 squamous cell carcinoma. MTX functionalized AuNPs demonstrated enhanced antioxidant activity and a pronounced cytotoxic effect on the tumoral cells compared to their individual components, highlighting their potential for improving cancer therapy.
Surface functionalized nanomaterial systems for targeted therapy of endocrine related tumors: a review of recent advancements
Liu L, Yang M and Chen Z
The application of multidisciplinary techniques in the management of endocrine-related cancers is crucial for harnessing the advantages of multiple disciplines and their coordinated efforts in eliminating tumors. Due to the malignant characteristics of cancer cells, they possess the capacity to develop resistance to traditional treatments such as chemotherapy and radiotherapy. Nevertheless, despite diligent endeavors to enhance the prediction of outcomes, the overall survival rate for individuals afflicted with endocrine-related malignancy remains quite miserable. Hence, it is imperative to investigate innovative therapy strategies. The latest advancements in therapeutic tactics have offered novel approaches for the therapy of various endocrine tumors. This paper examines the advancements in nano-drug delivery techniques and the utilization of nanomaterials for precise cancer cures through targeted therapy. This review provides a thorough analysis of the potential of combined drug delivery strategies in the treatment of thyroid cancer, adrenal gland tumors, and pancreatic cancer. The objective of this study is to gain a deeper understanding of current therapeutic approaches, stimulate the development of new drug DDS, and improve the effectiveness of treatment for patients with these diseases. The intracellular uptake of pharmaceuticals into cancer cells can be significantly improved through the implantation of synthetic or natural substances into nanoparticles, resulting in a substantial reduction in the development of endocrine malignancies.
Improving anti-oxidant stress treatment of subarachnoid hemorrhage through self-assembled nanoparticles of oleanolic acid
Zhou Y, Wang H, Zhu X, Zhao Q, Deng G, Li Y and Chen Q
Subarachnoid hemorrhage (SAH) is a life-threatening acute hemorrhagic cerebrovascular disease, with early brain injury (EBI) being the main cause of high mortality and severe neurological dysfunction. Oxidative stress plays a crucial role in the pathogenesis of EBI. In this study, we synthesized antioxidant stress nanoparticles based on self-assembled oleanolic acid (OA) using the solvent volatilization method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) techniques were employed to analyze and understand the self-assembly mechanism of oleic acid nanoparticles (OA NPs). The TUNEL assay, Nissl staining, and brain water content measurements were conducted to investigate the impact of OA NPs on cortical neuronal injury. Additionally, Western blot analysis was performed to investigate the antioxidant stress mechanism of OA NPs. The result showed that OA NPs exhibited a spherical structure with an average diameter of 168 nm. The application of OA NPs in SAH has been found to contribute to the reduction of keap1 protein levels and an increase in the nuclear level of Nrf2. As a result, the transcription of antioxidant stress proteins, including HO1 and NQO1, is triggered. The activation of the antioxidant stress pathway by OA NPs ultimately leads to a decrease in neuron damage and an improvement in neurological dysfunction. In conclusion, we successfully designed and synthesized OA NPs that can efficiently target the site of SAH. These nanoparticles have demonstrated their potential as antioxidants for the treatment of SAH, offering significant clinical applications.
Development of a drug delivering round window niche implant for cochlear pharmacotherapy
Wei C, Gao Z, Knabel M, Ulbricht M, Senekowitsch S, Erfurt P, Maggi N, Zwick B, Eickner T, Matin-Mann F, Seidlitz A, Lenarz T and Scheper V
There exists an unfulfilled requirement for effective cochlear pharmacotherapy. Controlled local drug delivery could lead to effective bioavailability. The round window niche (RWN), a cavity in the middle ear, is connected to the cochlea via a membrane through which drug can diffuse. We are developing individualized drug-eluting RWN implants (RNIs). To test their effectiveness in guinea pigs, a commonly used model in cochlear pharmacology studies, it is first necessary to develop guinea pig RNIs (GP-RNI).
Drug delivery in leptomeningeal disease: Navigating barriers and beyond
Arshad N, Biswas N, Gill J, Kesari S and Ashili S
Leptomeningeal disease (LMD) refers to the infiltration of cancer cells into the leptomeningeal compartment. Leptomeninges are the two membranous layers, called the arachnoid membrane and pia mater. The diffuse nature of LMD poses a challenge to its effective diagnosis and successful management. Furthermore, the predominant phenotype; solid masses or freely floating cells, has altering implications on the effectiveness of drug delivery systems. The standard of care is the intrathecal delivery of chemotherapy drugs but it is associated with increased instances of treatment-related complications, low patient compliance, and suboptimal drug distribution. An alternative involves administering the drugs systemically, after which they must traverse fluid barriers to arrive at their destination within the leptomeningeal space. However, this route is known to cause off-target effects as well as produce subtherapeutic drug concentrations at the target site within the central nervous system. The development of new drug delivery systems such as liposomal cytarabine has improved drug delivery in leptomeningeal metastatic disease, but much still needs to be done to effectively target this challenging condition. In this review, we discuss about the anatomy of leptomeninges relevant for drug penetration, the conventional and advanced drug delivery methods for LMD. We also discuss the future directions being set by different clinical trials.
Mannose/stearyl chloride doubly functionalized polyethylenimine as a nucleic acid vaccine carrier to promote macrophage uptake
Bai L, Chen X, Li C, Zhou H, Li Y, Xiao J, Zhang F, Cheng H and Zhou M
Transmembrane transport remains a significant challenge for nucleic acid vaccine vectors. Promoting the ability of immune cells, such as macrophages, to capture foreign stimuli is also an effective approach to improving cross-presentation. In addition, polyethyleneimine (PEI) has gained attention in the field of nucleic acid vaccine carriers due to its excellent gene transfection efficiency and unique proton buffering effect. However, although high molecular weight PEI exhibits high efficiency, its high-density positive charges make it highly toxic, which limits its application. In this study, mannose/stearyl chloride functionalized polyethylenimine (SA-Man-PEI) was prepared by functionalizing PEI (molecular weight of 25 kDa) with mannose with immunomodulatory and phagocyte targeting effects, and an alkyl hydrophobic chain segment, which could easily promote cell uptake. Moreover, the functionalized-PEI retains a strong proton buffering effect, which helps the carrier escape from the lysosome. The particle sizes of the composite particles formed by SA-Man-PEI and ovalbumin (OVA) were below 200 nm, with good storage stability at both 4 °C and 37 °C. At a drug concentration of 2 μg/mL, the cell survival rate of functionalized-PEI was 19.2% higher than that of unfunctionalized PEI. In vitro macrophage endocytosis experiments showed that SA-Man-PEI could significantly enhance the macrophage uptake of composite particles, compared to unfunctionalized PEI or single-functionalized PEI. This study offers a new approach for developing PEI as a nucleic acid vaccine carrier, which could simultaneously enhance cell targeting and promote cell uptake.
Recognizing the biological barriers and pathophysiological characteristics of the gastrointestinal tract for the design and application of nanotherapeutics
Li S, Wu T, Wu J, Chen W and Zhang D
The gastrointestinal tract (GIT) is an important and complex system by which humans to digest food and absorb nutrients. The GIT is vulnerable to diseases, which may led to discomfort or even death in humans. Therapeutics for GIT disease treatment face multiple biological barriers, which significantly decrease the efficacy of therapeutics. Recognizing the biological barriers and pathophysiological characteristics of GIT may be helpful to design innovative therapeutics. Nanotherapeutics, which have special targeting and controlled therapeutic release profiles, have been widely used for the treatment of GIT diseases. Herein, we provide a comprehensive review of the biological barrier and pathophysiological characteristics of GIT, which may aid in the design of promising nanotherapeutics for GIT disease treatment. Furthermore, several typical diseases of the upper and lower digestive tracts, such as infection and inflammatory bowel disease, were selected to investigate the application of nanotherapeutics for GIT disease treatment.
Disordered mesoporous silica particles: an emerging platform to deliver proteins to the lungs
Rocío Hernández A, Bogdanova E, Campos Pacheco JE, Kocherbitov V, Ekström M, Pilkington G and Valetti S
Pulmonary delivery and formulation of biologics are among the more complex and growing scientific topics in drug delivery. We herein developed a dry powder formulation using disordered mesoporous silica particles (MSP) as the sole excipient and lysozyme, the most abundant antimicrobial proteins in the airways, as model protein. The MSP had the optimal size for lung deposition (2.43 ± 0.13 µm). A maximum lysozyme loading capacity (0.35 mg/mg) was achieved in 150 mM PBS, which was seven times greater than that in water. After washing and freeze-drying, we obtained a dry powder consisting of spherical, non-aggregated particles, free from residual buffer, or unabsorbed lysozyme. The presence of lysozyme was confirmed by TGA and FT-IR, while N adsorption/desorption and SAXS analysis indicate that the protein is confined within the internal mesoporous structure. The dry powder exhibited excellent aerodynamic performance (fine particle fraction <5 µm of 70.32%). Lysozyme was released in simulated lung fluid in a sustained kinetics and maintaining high enzymatic activity (71-91%), whereas LYS-MSP were shown to degrade into aggregated nanoparticulate microstructures, reaching almost complete dissolution (93%) within 24 h. MSPs were nontoxic to lung epithelium. The study demonstrates disordered MSP as viable carriers to successfully deliver protein to the lungs, with high deposition and retained activity.
The recent research progress in the application of the nanozyme-hydrogel composite system for drug delivery
Li H, Liu Z, Zhang P and Zhang D
Hydrogels, comprising 3D hydrophilic polymer networks, have emerged as promising biomaterial candidates for emulating the structure of biological tissues and delivering drugs through topical administration with good biocompatibility. Nanozymes can catalyze endogenous biomolecules, thereby initiating or inhibiting biological processes. A nanozyme-hydrogel composite inherits the biological functions of hydrogels and nanozymes, where the nanozyme serves as the catalytic core and the hydrogel forms the structural scaffold. Moreover, the composite can concentrate nanozymes in targeted lesions and catalyze the binding of a specific group of substrates, resulting in pathological microenvironment remodeling and drug-penetrating barrier impairment. The composite also shields nanozymes to prevent burst release during catalytic production and reduce related toxicity. Currently, the application of these composites has been extended to antibacterial, anti-inflammatory, anticancer, and tissue repair applications. In this review, we elucidate the preparation methods for nanozyme-hydrogel composites, provide compelling evidence of their advantages in drug delivery and provide a comprehensive overview of their biological application.
Drug retention after intradiscal administration
Rudnik-Jansen I, Du J, Karssemakers-Degen N, Tellegen AR, Wadhwani P, Zuncheddu D, Meij BP, Thies J, Emans P, Öner FC, Mihov G, Garcia JP, Ulrich AS, Grad S, Tryfonidou MA, Ingen HV and Creemers LB
Intradiscal drug delivery is a promising strategy for treating intervertebral disk degeneration (IVDD). Local degenerative processes and intrinsically low fluid exchange are likely to influence drug retention. Understanding their connection will enable the optimization of IVDD therapeutics. Release and retention of an inactive hydrophilic fluorine-19 labeled peptide (F-P) as model for regenerative peptides was studied in a whole IVD culture model by measuring the F-NMR (nuclear magnetic resonance) signal in culture media and IVD tissue extracts. In another set-up, noninvasive near-infrared imaging was used to visualize IR-780, as hydrophobic small molecular drug model, retention upon injection into healthy and degenerative caudal IVDs in a rat model of disk degeneration. Furthermore, IR-780-loaded degradable polyester amide microspheres (PEAM) were injected into healthy and needle pricked degenerative IVDs, subcutaneously, and in knee joints with and without surgically-induced osteoarthritis (OA). Most F-P was released from the IVD after 7 days. IR-780 signal intensity declined over a 14-week period after bolus injection, without a difference between healthy and degenerative disks. IR-780 signal declined faster in the skin and knee joints compared to the IVDs. IR-780 delivery by PEAMs enhanced disk retention beyond 16 weeks. Moreover, in degenerated IVDs the IR-780 signal was higher over time than in healthy IVDs while no difference between OA and healthy joints was noted. We conclude that the clearance of peptides and hydrophobic small molecules from the IVD is relatively fast. These results illustrate that development of controlled release formulations should take into account the target anatomical location and local (patho)biology.
The role of lipid particle-laden interfaces in regulating the co-delivery of two hydrophobic actives from o/w emulsions
Sakellari GI, Batchelor H and Spyropoulos F
Co-delivery strategies have become an integral active delivery approach, although understanding of how the microstructural characteristics could be deployed to achieve independently regulated active co-delivery profiles, is still an area at its infancy. Herein, the capacity to provide such control was explored by utilizing Pickering emulsions stabilized by lipid particles, namely solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs). These dual functional species, regarding their concurrent Pickering stabilization and active carrying/delivery capabilities, were formulated with different solid lipid and surfactant types, and the effect on the release and co-release modulation of two hydrophobic actives separately encapsulated within the lipid particles themselves and within the emulsion droplets was investigated. Disparities between the release profiles from the particles in aqueous dispersions or at an emulsion interface, were related to the specific lipid matrix composition. Particles composed of lipids with higher oil phase compatibility of the emulsion droplets were shown to exert less control over their release regulation ability, as were particles in the presence of surfactant micelles in the continuous phase. Irrespective of their formulation characteristics, all particles provided a level of active release control from within the emulsion droplets, which was dependant on the permeability of the formed interfacial layer. Specifically, use of a bulkier particle surfactant or particle sintering at the droplet interface resulted in more sustained droplet release rates. Compared to sole release, the co-release performance remained unaffected by the co-existence of the two hydrophobic actives with the co-release behavior persisting over a storage period of 1 month.
Advances in drug delivery systems utilizing blood cells and their membrane-derived microvesicles
He A, Huang Y, Cao C and Li X
The advancement of drug delivery systems (DDSs) in recent decades has demonstrated significant potential in enhancing the efficacy of pharmacological agents. Despite the approval of certain DDSs for clinical use, challenges such as rapid clearance from circulation, toxic accumulation in the body, and ineffective targeted delivery persist as obstacles to successful clinical application. Blood cell-based DDSs have emerged as a popular strategy for drug administration, offering enhanced biocompatibility, stability, and prolonged circulation. These DDSs are well-suited for systemic drug delivery and have played a crucial role in formulating optimal drug combinations for treating a variety of diseases in both preclinical studies and clinical trials. This review focuses on recent advancements and applications of DDSs utilizing blood cells and their membrane-derived microvesicles. It addresses the current therapeutic applications of blood cell-based DDSs at the organ and tissue levels, highlighting their successful deployment at the cellular level. Furthermore, it explores the mechanisms of cellular uptake of drug delivery vectors at the subcellular level. Additionally, the review discusses the opportunities and challenges associated with these DDSs.
Development of ion-triggered gel containing ketoconazole/hydroxypropyl-β-cyclodextrin for ocular delivery: and evaluation
Xia H, Yang J, Song F, Pu G, Dong F, Liang Z and Zhang J
The application of ketoconazole (KET) in ocular drug delivery is restricted by its poor aqueous solubility though its broad-spectrum antifungal activity. The aim of this study is to develop an ion-sensitive gel (ISG) of KET to promote its ocular bioavailability in topical application. The solubility of KET in water was increased by complexation with hydroxypropyl-β-cyclodextrin (HPβCD), then KET-HPβCD inclusion complex (KET-IC) was fabricated into an ion-sensitive ISG triggered by sodium alginate (SA). The drug release and antifungal activities investigations demonstrated that the KET-IC-ISG formulation increased drug release and anti-fungal activities compared to pure KET. The rabbit corneal permeation studied demonstrated higher permeability of KET-IC-ISG formulation ( of (6.34 0.21) 10cm/h) than pure KET ( of (3.09 0.09) 10cm/h). The cytotoxicity assay and the ocular irritation study in rabbits confirmed the KET-IC-ISG safety and well tolerance. The ocular pharmacokinetics of KET in rabbits was investigated and the results showed that the KET-IC-ISG increased its bioavailability in cornea by 47-fold. In conclusion, the KET-IC-ISG system promoted the precorneal retention, the ocular drug bioavailability and the developed formulation is a potential strategy to treat mycotic keratitis.
Biodegradable silica nanoparticles for efficient linear DNA gene delivery
Ramos-Valle A, Kirst H and Fanarraga ML
Targeting, safety, scalability, and storage stability of vectors are still challenges in the field of nucleic acid delivery for gene therapy. Silica-based nanoparticles have been widely studied as gene carriers, exhibiting key features such as biocompatibility, simplistic synthesis, and enabling easy surface modifications for targeting. However, the ability of the formulation to incorporate DNA is limited, which restricts the number of DNA molecules that can be incorporated into the particle, thereby reducing gene expression. Here we use polymerase chain reaction (PCR)-generated linear DNA molecules to augment the coding sequences of gene-carrying nanoparticles, thereby maximizing nucleic acid loading and minimizing the size of these nanocarriers. This approach results in a remarkable 16-fold increase in protein expression six days post-transfection in cells transfected with particles carrying the linear DNA compared with particles bearing circular plasmid DNA. The study also showed that the use of linear DNA entrapped in DNA@SiO resulted in a much more efficient level of gene expression compared to standard transfection reagents. The system developed in this study features simplicity, scalability, and increased transfection efficiency and gene expression over existing approaches, enabled by improved embedment capabilities for linear DNA, compared to conventional methods such as lipids or polymers, which generally show greater transfection efficiency with plasmid DNA. Therefore, this novel methodology can find applications not only in gene therapy but also in research settings for high-throughput gene expression screenings.
Correction
Surface saturation of drug-loaded hollow manganese dioxide nanoparticles with human serum albumin for treating rheumatoid arthritis
Jia M, Ren W, Wang M, Liu Y, Wang C, Zhang Z, Xu M, Ding N, Li C and Yang H
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease accompanied by energy depletion and accumulation of reactive oxygen species (ROS). Inorganic nanoparticles (NPs) offer great promise for the treatment of RA because they mostly have functions beyond being drug carriers. However, conventional nanomaterials become coated with a protein corona (PC) or lose their cargo prematurely , reducing their therapeutic efficacy. To avoid these problems, we loaded methotrexate (MTX) into hollow structured manganese dioxide nanoparticles (H-MnO NPs), then coated them with a 'pseudo-corona' of human serum albumin (HSA) at physiological concentrations to obtain HSA-MnO@MTX NPs. Efficacy of MTX, MnO@MTX, and HSA-MnO@MTX NPs was compared and . Compared to MnO@MTX, HSA-coated NPs were taken up better by lipopolysaccharide-activated RAW264.7 and were more effective at lowering levels of pro-inflammatory cytokines and preventing ROS accumulation. HSA-MnO@MTX NPs were also more efficient at blocking the proliferation and migration of fibroblast-like synoviocytes from rats with collagen-induced arthritis. In this rat model, HSA-MnO@MTX NPs showed better biodistribution than other treatments, specifically targeting the ankle joint. Furthermore, HSA-MnO@MTX NPs reduced swelling in the paw, regulated pro-inflammatory cytokine production, and limited cartilage degradation and signs of inflammation. These results establish the therapeutic potential of HSA-MnO@MTX NPs against RA.
Recent advances of injectable in situ-forming hydrogels for preventing postoperative tumor recurrence
Wang Z, Zhai B, Sun J, Zhang X, Zou J, Shi Y and Guo D
The unavoidable residual tumor tissue from surgery and the strong aggressiveness of tumor cells pose challenges to the postoperative treatment of tumor patients, accompanied by in situ tumor recurrence and decreased quality of life. Therefore, there is an urgent need to explore appropriate postoperative therapeutic strategies to remove residual tumor cells after surgery to inhibit tumor recurrence and metastasis after surgery. In recent years, with the rapid development of biomedical materials, the study of local delivery systems as postoperative delivery of therapeutic agents has gradually attracted the attention of researchers. Injectable in situ-forming hydrogel is a locally administered agent injected in situ as a solution that can be loaded with various therapeutic agents and rapidly gels to form a semi-solid gel at the treatment site. This type of hydrogel tightly fills the surgical site and covers irregular excision surfaces. In this paper, we review the recent advances in the application of injectable in situ-forming hydrogels in postoperative therapy, focusing on the matrix materials of this type of hydrogel and its application in the postoperative treatment of different types of tumors, as well as discussing the challenges and prospects of its clinical application.
Development of a novel SupraChoroidal-to-Optic-NervE (SCONE) drug delivery system
Chiang B, Heng K, Jang K, Dalal R, Liao YJ, Myung D and Goldberg JL
Targeted drug delivery to the optic nerve head may be useful in the preclinical study and later clinical management of optic neuropathies, however, there are no FDA-approved drug delivery systems to achieve this. The purpose of this work was to develop an optic nerve head drug delivery technique.
Bone scaffolds-based localized drugs delivery for osteosarcoma: current status and future perspective
Liang W, Long H, Zhang H, Bai J, Jiang B, Wang J, Fu L, Ming W, Zhao J and Zeng B
A common malignant bone neoplasm in teenagers is Osteosarcoma. Chemotherapy, surgical therapy, and radiation therapy together comprise the usual clinical course of treatment for Osteosarcoma. While Osteosarcoma and other bone tumors are typically treated surgically, however, surgical resection frequently fails to completely eradicate tumors, and in turn becomes the primary reason for postoperative recurrence and metastasis, ultimately leading to a high rate of mortality. Patients still require radiation and/or chemotherapy after surgery to stop the spread of the tumor and its metastases, and both treatments have an adverse influence on the body's organ systems. In the postoperative management of osteosarcoma, bone scaffolds can load cargos (growth factors or drugs) and function as drug delivery systems (DDSs). This review describes the different kinds of bone scaffolds that are currently available and highlights key studies that use scaffolds as DDSs for the treatment of osteosarcomas. The discussion also includes difficulties and perspectives regarding the use of scaffold-based DDSs. The study may serve as a source for outlining efficient and secure postoperative osteosarcoma treatment plans.
Suspensions of antibiotics in self-emulsifying oils as a novel approach to formulate eye drops with substances which undergo hydrolysis in aqueous environment
Krzeminska K, Sznitowska M, Wroblewska M, Wolska E and Winnicka K
The aim of this study was to develop eye-drops with cefuroxime (CEF) sodium or vancomycin (VAN) hydrochloride, antibiotics that are instable in water. Anhydrous self-emulsifying oils (SEO) are proposed as a carrier and antibiotics are suspended. In the contact with tear fluid, the formulation should transform into emulsion, with fast dissolution of an antibiotic. CEF or VAN (5% w/w) was suspended in SEO carriers prepared by dissolving surfactants (Tween 20 or Span 80 5% w/w) in Miglyol, castor oil, or olive oil. Formulations with or without sodium citrate (2% w/w) were compared. Six-months or 1-year stability tests were carried out at 40 °C. The content of CEF and VAN was evaluated using HPLC and the potency of the antibiotic was assessed with agar diffusion method. In contact with water, drug particles suspended in SEO dissolved rapidly and o/w emulsion was formed. After 1-year at 40 °C, the content of degradation products was at most 0.5% in CEF and 4.0% in VAN formulations. The agar diffusion assay has shown that CEF and VAN loaded into SEO retained its potency against the sensitive microorganisms comparable to an aqueous solution. Therefore, SEO can be used as a novel carrier for the active substances which may not require improved solubility or absorption but need to be protected from moisture. This is a formulation that can be produced on industrial scale, with no limitation of stability or drug concentration.
Fixation alters the physical properties of tumor tissue that regulate nanomedicine transport
Martin JD, Mpekris F, Chauhan VP, Martin MR, Walsh ME, Stuber MD, McDonald DM, Yuan F, Stylianopoulos T and Jain RK
To have the desired therapeutic effect, nanomedicines and macromolecular medications must move from the site of injection to the site of action, without having adverse effects. Transvascular transport is a critical step of this navigation, as exemplified by the Enhanced Permeability and Retention (EPR) effect in solid tumors, not found in normal organs. Numerous studies have concluded that passive, diffusion- and convection-based transport predominates over active, cellular mechanisms in this effect. However, recent work using a new approach reevaluated this principle by comparing tumors with or without fixation and concluded the opposite. Here, we address the controversy generated by this new approach by reporting evidence from experimental investigations and computer simulations that separate the contributions of active and passive transport. Our findings indicate that tissue fixation reduces passive transport as well as active transport, indicating the need for new methods to distinguish the relative contributions of passive and active transport.