Energy-Efficient Hardware Implementation of Fully Connected Artificial Neural Networks Using Approximate Arithmetic Blocks
In this paper, we explore efficient hardware implementation of feedforward artificial neural networks (ANNs) using approximate adders and multipliers. Due to a large area requirement in a parallel architecture, the ANNs are implemented under the time-multiplexed architecture where computing resources are re-used in the multiply accumulate (MAC) blocks. The efficient hardware implementation of ANNs is realized by replacing the exact adders and multipliers in the MAC blocks by the approximate ones taking into account the hardware accuracy. Additionally, an algorithm to determine the approximate level of multipliers and adders due to the expected accuracy is proposed. As an application, the MNIST and SVHN databases are considered. To examine the efficiency of the proposed method, various architectures and structures of ANNs are realized. Experimental results show that the ANNs designed using the proposed approximate multiplier have a smaller area and consume less energy than those designed using previously proposed prominent approximate multipliers. It is also observed that the use of both approximate adders and multipliers yields, respectively, up to 50% and 10% reduction in energy consumption and area of the ANN design with a small deviation or better hardware accuracy when compared to the exact adders and multipliers.
Efficient Attention Branch Network with Combined Loss Function for Automatic Speaker Verification Spoof Detection
Many endeavors have sought to develop countermeasure techniques as enhancements on Automatic Speaker Verification (ASV) systems, in order to make them more robust against spoof attacks. As evidenced by the latest ASVspoof 2019 countermeasure challenge, models currently deployed for the task of ASV are, at their best, devoid of suitable degrees of generalization to unseen attacks. A joint improvement of components of ASV spoof detection systems including the classifier, feature extraction phase, and model loss function may lead to a better detection of attacks by these systems. Accordingly, the present study proposes the Efficient Attention Branch Network (EABN) architecture with a combined loss function to address the model generalization to unseen attacks. The EABN is based on attention and perception branches. The attention branch provides an attention mask that improves the classification performance and at the same time is interpretable from a human point of view. The perception branch, is used for our main purpose which is spoof detection. The new EfficientNet-A0 architecture was optimized and employed for the perception branch, with nearly ten times fewer parameters and approximately seven times fewer floating-point operations than the SE-Res2Net50 as the best existing network. The proposed method on ASVspoof 2019 dataset achieved EER = 0.86% and t-DCF = 0.0239 in the Physical Access (PA) scenario using the logPowSpec as the input feature extraction method. Furthermore, using the LFCC feature, and the SE-Res2Net50 for the perception branch, the proposed model achieved EER = 1.89% and t-DCF = 0.507 in the Logical Access (LA) scenario, which to the best of our knowledge, is the best single system ASV spoofing countermeasure method.
A novel method for estimating the fractional Cole impedance model using single-frequency DC-biased sinusoidal excitation
The Cole model is a widely used fractional circuit model in electrical bioimpedance applications for evaluating the content and status of biological tissues and fluids. Existing methods for estimating the Cole impedance parameters are often based on -frequency data obtained from stepped-sine measurements fitted using a complex non-linear least square (CNLS) algorithm. Newly emerged numerical methods from the magnitude of electrical bio-impedance data-only do not need CNLS fitting, but they still require -frequency stepped-sine data. This study proposes a novel approach to estimating the Cole impedance parameters that combines a numerical and time-domain fitting method based on a -frequency DC-biased sinusoidal current excitation.
Identification of the ARX Model with Random Impulse Noise Based on Forgetting Factor Multi-error Information Entropy
Entropy has been widely applied in system identification in the last decade. In this paper, a novel stochastic gradient algorithm based on minimum Shannon entropy is proposed. Though needing less computation than the mean square error algorithm, the traditional stochastic gradient algorithm converges relatively slowly. To make the convergence faster, a multi-error method and a forgetting factor are integrated into the algorithm. The scalar error is replaced by a vector error with stacked errors. Further, a simple step size method is proposed and a forgetting factor is adopted to adjust the step size. The proposed algorithm is utilized to estimate the parameters of an ARX model with random impulse noise. Several numerical solutions and case study indicate that the proposed algorithm can obtain more accurate estimates than the traditional gradient algorithm and has a faster convergence speed.
Classifier Fusion for Detection of COVID-19 from CT Scans
The coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. COVID-19 is found to be the most infectious disease in last few decades. This disease has infected millions of people worldwide. The inadequate availability and the limited sensitivity of the testing kits have motivated the clinicians and the scientist to use Computer Tomography (CT) scans to screen COVID-19. Recent advances in technology and the availability of deep learning approaches have proved to be very promising in detecting COVID-19 with increased accuracy. However, deep learning approaches require a huge labeled training dataset, and the current availability of benchmark COVID-19 data is still small. For the limited training data scenario, the CNN usually overfits after several iterations. Hence, in this work, we have investigated different pre-trained network architectures with transfer learning for COVID-19 detection that can work even on a small medical imaging dataset. Various variants of the pre-trained ResNet model, namely ResNet18, ResNet50, and ResNet101, are investigated in the current paper for the detection of COVID-19. The experimental results reveal that transfer learned ResNet50 model outperformed other models by achieving a recall of 98.80% and an F1-score of 98.41%. To further improvise the results, the activations from different layers of best performing model are also explored for the detection using the support vector machine, logistic regression and K-nearest neighbor classifiers. Moreover, a classifier fusion strategy is also proposed that fuses the predictions from the different classifiers via majority voting. Experimental results reveal that via using learned image features and classification fusion strategy, the recall, and F1-score have improvised to 99.20% and 99.40%.
Automated Detection of COVID-19 Using Deep Learning Approaches with Paper-Based ECG Reports
One of the pandemics that have caused many deaths is the Coronavirus disease 2019 (COVID-19). It first appeared in late 2019, and many deaths are increasing day by day until now. Therefore, the early diagnosis of COVID-19 has become a salient issue. Additionally, the current diagnosis methods have several demerits, and a new investigation is required to enhance the diagnosis performance. In this paper, a set of phases are performed, such as collecting data, filtering and augmenting images, extracting features, and classifying ECG images. The data were obtained from two publicly available ECG image datasets, and one of them contained COVID ECG reports. A set of preprocessing methods are applied to the ECG images, and data augmentation is performed to balance the ECG images based on the classes. A deep learning approach based on a convolutional neural network (CNN) is performed for feature extraction. Four different pre-trained models are applied, such as Vgg16, Vgg19, ResNet-101, and Xception. Moreover, an ensemble of Xception and the temporary convolutional network (TCN), which is named ECGConvnet, is proposed. Finally, the results obtained from the former models are fed to four main classifiers. These classifiers are softmax, random forest (RF), multilayer perception (MLP), and support vector machine (SVM). The former classifiers are used to evaluate the diagnosis ability of the proposed methods. The classification scenario is based on fivefold cross-validation. Seven experiments are presented to evaluate the performance of the ECGConvnet. Three of them are multi-class, and the remaining are binary class diagnosing. Six out of seven experiments diagnose COVID-19 patients. The aforementioned experimental results indicated that ECGConvnet has the highest performance over other pre-trained models, and the SVM classifier showed higher accuracy in comparison with the other classifiers. The resulting accuracies from ECGConvnet based on SVM are (99.74%, 98.6%, 99.1% on the multi-class diagnosis tasks) and (99.8% on one of the binary-class diagnoses, while the remaining achieved 100%). It is possible to develop an automatic diagnosis system for COVID based on deep learning using ECG data.
Detection of Common Cold from Speech Signals using Deep Neural Network
This paper presents a deep learning-based analysis and classification of cold speech observed when a person is diagnosed with the common cold. The common cold is a viral infectious disease that affects the throat and the nose. Since speech is produced by the vocal tract after linear filtering of excitation source information, during a common cold, its attributes are impacted by the throat and the nose. The proposed study attempts to develop a deep learning-based classification model that can accurately predict whether a person has a cold or not based on their speech. The common cold-related information is captured using Mel-frequency cepstral coefficients (MFCC) and linear predictive coding (LPC) from the speech signal. The data imbalance is handled using the sampling strategy, SMOTE-Tomek links. Then, utilizing MFCC and LPC features, a deep learning-based model is trained and then used to categorize cold speech. The performance of a deep learning-based method is compared to logistic regression, random forest, and gradient boosted tree classifiers. The proposed model is less complex and uses a smaller feature set while giving comparable results to other state-of-the-art methods. The proposed method gives an UAR of , higher than the benchmark OpenSMILE SVM result of . The study's success will yield a noninvasive method for cold detection, which can further be extended to detect other speech-affecting pathologies.
Fooling the Big Picture in Classification Tasks
Minimally perturbed adversarial examples were shown to drastically reduce the performance of one-stage classifiers while being imperceptible. This paper investigates the susceptibility of hierarchical classifiers, which use fine and coarse level output categories, to adversarial attacks. We formulate a program that encodes minimax constraints to induce misclassification of the coarse class of a hierarchical classifier (e.g., changing the prediction of a 'monkey' to a 'vehicle' instead of some 'animal'). Subsequently, we develop solutions based on convex relaxations of said program. An algorithm is obtained using the alternating direction method of multipliers with competitive performance in comparison with state-of-the-art solvers. We show the ability of our approach to fool the coarse classification through a set of measures such as the relative loss in coarse classification accuracy and imperceptibility factors. In comparison with perturbations generated for one-stage classifiers, we show that fooling a classifier about the 'big picture' requires higher perturbation levels which results in lower imperceptibility. We also examine the impact of different label groupings on the performance of the proposed attacks.