CHEMICAL ENGINEERING JOURNAL

Potential Application of Room Temperature Synthesized MIL-100(Fe) in Enhancing Methane Production in Microbial Electrolysis Cells-Anaerobic Digestion Treating Protein-Rich Wastewater
Yan S, Liu C, Luo X, Wu C, Zheng Y, Zhuo G and Zhen G
Microbial electrolysis cell-anaerobic digestion (MEC-AD) is an emerging technology for methane production. However, low substrate degradation efficiency remains a challenge when processing protein substrates. This study developed a MIL-100(Fe) carbon cloth anode to enhance methane production and substrate degradation in MEC-AD. The effects of MIL-100(Fe) prepared under hydrothermal (H-MIL-100(Fe)) and room temperature conditions (R-MIL-100(Fe)) were compared. Results indicated that H-MIL-100(Fe) and R-MIL-100(Fe) increased cumulative methane production by 16.01% and 14.99%, respectively compared to normal cloth, each influencing methane production through distinct mechanisms. Electrochemical characterization showed that H-MIL-100(Fe) enhanced the electrochemical performance more significantly due to the enrichment of , with the oxidation current improved by 7.39-fold (R-MIL-100(Fe) increased it by only 2.95-fold) to promote growth of . Metagenomic analysis revealed that R-MIL-100(Fe) tended to metabolize amino acids into methane rather than support cellular life activities, indicating its practicality under limited substrate concentration. In summary, R-MIL-100(Fe) shows greater potential for application due to its mild synthesis conditions and advantages in treating complex substrates.
Peptide-coated DNA nanostructures as a platform for control of lysosomal function in cells
Elblová P, Lunova M, Henry SJW, Tu X, Calé A, Dejneka A, Havelková J, Petrenko Y, Jirsa M, Stephanopoulos N and Lunov O
DNA nanotechnology is a rapidly growing field that provides exciting tools for biomedical applications. Targeting lysosomal functions with nanomaterials, such as DNA nanostructures (DNs), represents a rational and systematic way to control cell functionality. Here we present a versatile DNA nanostructure-based platform that can modulate a number of cellular functions depending on the concentration and surface decoration of the nanostructure. Utilizing different peptides for surface functionalization of DNs, we were able to rationally modulate lysosomal activity, which in turn translated into the control of cellular function, ranging from changes in cell morphology to modulation of immune signaling and cell death. Low concentrations of decalysine peptide-coated DNs induced lysosomal acidification, altering the metabolic activity of susceptible cells. In contrast, DNs coated with an aurein-bearing peptide promoted lysosomal alkalization, triggering STING activation. High concentrations of decalysine peptide-coated DNs caused lysosomal swelling, loss of cell-cell contacts, and morphological changes without inducing cell death. Conversely, high concentrations of aurein-coated DNs led to lysosomal rupture and mitochondrial damage, resulting in significant cytotoxicity. Our study holds promise for the rational design of a new generation of versatile DNA-based nanoplatforms that can be used in various biomedical applications, like the development of combinatorial anti-cancer platforms, efficient systems for endolysosomal escape, and nanoplatforms modulating lysosomal pH.
A novel sustainable immunoassay for sensitive detection of atrazine based on the anti-idiotypic nanobody and recombinant full-length antibody
Zhao J, Li P, Abd El-Aty AM, Xu L, Lei X, Gao S, Li J, Zhao Y, She Y, Jin F, Wang J, Hammock BD and Jin M
Immunoassays have been widely used to determine small-molecule compounds in food and the environment, meeting the challenge of obtaining false positive or negative results because of the variance in the batches of antibodies and antigens. To resolve this problem, atrazine (ATR) was used as a target, and anti-idiotypic nanobodies for ATR (AI-Nbs) and a recombinant full-length antibody against ATR (ATR-rAb) were prepared for the development of a sustainable enzyme-linked immunosorbent assay (ELISA). AI-Nb-7, AI-Nb-58, and AI-Nb-66 were selected from an immune phage display library. ATR-rAb was produced in mammalian HEK293 (F) cells. Among the four detection methods explored, the assay using AI-Nb-66 as a coating antigen and ATR-rAb as a detection reagent yielded a half maximal inhibitory concentration (IC) of 1.66 ng mL for ATR and a linear range of 0.35-8.73 ng mL. The cross-reactivity of the assay to ametryn was 64.24%, whereas that to terbutylazine was 38.20%. Surface plasmon resonance (SPR) analysis illustrated that these cross-reactive triazine compounds can bind to ATR-rAb to varying degrees at high concentrations; however, the binding/dissociation kinetic curves and the response values at the same concentration are different, which results in differences in cross-reactivity. Homology modeling and molecular docking revealed that the triazine ring is vital in recognizing triazine compounds. The proposed immunoassay exhibited acceptable recoveries of 84.40-105.36% for detecting fruit, vegetables, and black tea. In conclusion, this study highlights a new strategy for developing sustainable immunoassays for detecting trace pesticide contaminants.
Thickness Dependent CO Adsorption of Poly(ethyleneimine) Thin Films for Direct Air Capture
Hoffman JR, Baumann AE and Stafford CM
Mesoporous silica impregnated with polyethyleneimine (PEI) has been shown to be a suitable material for the direct air capture (DAC) of CO. Factors such as CO concentration, temperature, and amine loading impact overall capture capacity and amine efficiency by altering diffusional resistance and reaction kinetics. When studied in the impregnated 3-dimensional sorbent material, internal diffusion impacts the evaluation of the reaction kinetics at the air/amine interface. In this work, we designed a novel tandem quartz crystal microbalance with dissipation (QCM-D) and polarization modulation infrared reflective absorption spectroscopy (PM-IRRAS) instrument. CO adsorption kinetics of the PEI-based amine layer in a 2-dimensional geometry were studied at a variety of film thicknesses (10 nm to 100 nm), temperatures (25 °C to 80 °C), and CO concentrations (5 % and 0.04 % by mole fraction). Total CO capture capacity increased with film thickness but decreased amine efficiency, as additional diffusional resistance for thicker films limits access to available amine sites. The capture capacity of thick films (>50 nm) is shown to be limited by amine availability, while capture of thin films (<50 nm) is limited by CO availability. A 50 nm PEI film was shown to be optimal for capture of 0.04 % (400 ppm) CO The adsorption profiles for these conditions were fitted to pseudo-first order and Avrami fractional order models. The reaction process switches between a diffusion limited reaction to a kinetic limited reaction at 80 °C when using 5 % CO and 55 °C when using 0.04 % CO. These results offer accurate analysis of adsorption of CO at the air/amine interface of PEI films which can be used for the design of future sorbent materials.
Investigating environmentally persistent free radicals (EPFRs) emissions of 3D printing process
Hasan F, Potter PM, Al-Abed SR, Matheson J and Lomnicki SM
In recent years, the emission of particles and gaseous pollutants from 3D printing has attracted much attention due to potential health risks. This study investigated the generation of environmentally persistent free radicals (EPFRs, organic free radicals stabilized on or inside particles) in total particulate matter (TPM) released during the 3D printing process. Commercially available 3D printer filaments, made of acrylonitrile-butadiene-styrene (ABS) in two different colors and metal content, ABS-blue (19.66 μg/g Cu) and ABS-black (3.69 μg/g Fe), were used for printing. We hypothesized that the metal content/composition of the filaments contributes not only to the type and number of EPFRs in TPM emissions, but also impacts the overall yield of TPM emissions. TPM emissions during printing with ABS-blue (11.28 μg/g of printed material) were higher than with ABS-black (7.29 μg/g). Electron paramagnetic resonance (EPR) spectroscopy, employed to measure EPFRs in TPM emissions of both filaments, revealed higher EPFR concentrations in ABS-blue TPM (6.23 × 10 spins/g) than in ABS-black TPM (9.72 × 10 spins/g). The presence of copper in the ABS-blue contributed to the formation of mostly oxygen-centered EPFR species with a -factor of ~2.0041 and a lifetime of 98 days. The ABS-black EPFR signal had a lower -factor of ~2.0011, reflecting the formation of superoxide radicals during the printing process, which were shown to have an "estimated tentative" lifetime of 26 days. Both radical species (EPFRs and superoxides) translate to a potential health risk through inhalation of emitted particles.
Mitigating Metal-Organic Framework (MOF) Toxicity for Biomedical Applications
Wiśniewska P, Haponiuk J, Saeb MR, Rabiee N and Bencherif SA
Metal-organic frameworks (MOFs) are a novel class of crystalline porous materials, consisting of metal ions and organic linkers. These hybrid materials possess exceptional porosity and specific surface area, which have recently garnered significant interest due to their potential applications in gas separation and storage, energy storage, biomedical imaging, and drug delivery. As MOFs are being explored for biomedical applications, it is essential to comprehensively assess their toxicity. Although nearly ninety thousand MOFs have been investigated, evaluating and optimizing their physico-chemical properties in relevant biological systems remain critical for their clinical translation. In this review article, we first provide a brief classification of MOFs based on their chemical structures. We then conduct a comprehensive evaluation of and studies that assess the biocompatibility of MOFs. Additionally, we discuss various approaches to mitigate the critical factors associated with MOF toxicity. To this end, the effects of chemistry, particle size, morphology, and particle aggregation are examined. To better understand MOFs' potential toxicity to living organisms, we also delve into the toxicity mechanisms of nanoparticles (NPs). Furthermore, we introduce and evaluate strategies such as surface modification to reduce the inherent toxicity of MOFs. Finally, we discuss current challenges, the path to clinical trials, and new research directions.
A Photocured Bio-based Shape Memory Thermoplastics for Reversible Wet Adhesion
Wu Y, Su C, Wang S, Zheng B, Mahjoubnia A, Sattari K, Zhang H, Meister J, Huang G and Lin J
Development of reversible wet or underwater adhesives remains a grand challenge. Because weakened intermolecular interactions by water molecules or/and low effective contact area cause poor interface to the wet surfaces, which significantly decreases adhesive strength. Herein, a new photocured, bio-based shape memory polymer (SMP) that shows both chemical and structural wet adhesion to various types of surfaces is developed. The SMP is polymerized from three monomers mainly from bio-sources to form linear polymer chains dangled with hydrophobic side chains. The hydrogen acceptor and donor groups in the chains form hydrogen bonding with the surfaces, which is protected by the hydrophobic chains in the interface. The SMP shows tunable phase transition temperature () of 17-38 °C. In a rubbery state above , the adhesive forms conformable contact with the targeted surfaces. Below , a transition to a glassy state locks the conformed shapes to largely increase the effective contact area. As a result, the adhesive exhibits long-term underwater adhesion of > 15 days with the best adhesion strength of ~ 0.9 MPa. Its applications in leak repair, underwater on-skin sensors were demonstrated. This new, general strategy would pave avenues to designing bio-based, long-lasting, and reversible adhesives from renewable feedstocks for widespread applications.
Accelerating radiochemistry development: Automated robotic platform for performing up to 64 droplet radiochemical reactions in a morning
Jones J, Do V, Lu Y and van Dam RM
The growing discovery and development of novel radiopharmaceuticals and radiolabeling methods requires an increasing capacity for radiochemistry experiments. However, such studies typically rely on radiosynthesizers designed for clinical batch production rather than research, greatly limiting throughput. Two general solutions are being pursued to address this: developing new synthesis optimization algorithms to minimize how many experiments are needed, and developing apparatus with enhanced experiment throughput. We describe here a novel high-throughput system based on performing arrays of droplet-based reactions at 10 μL volume scale in parallel. The automatic robotic platform can perform a set of 64 experiments in ~3 h (from isotope loading to crude product, plus sampling onto TLC plates), plus ~1 h for off-line radio-TLC analysis and radioactivity measurements, rather than the weeks or months that would be needed using a conventional system. We show the high repeatability and low crosstalk of the platform and demonstrate optimization studies for two F-labeled tracers. This novel automated platform greatly increases the practicality of performing arrays of droplet reactions by eliminating human error, vastly reducing tedium and fatigue, minimizing radiation exposure, and freeing up radiochemist time for other intellectually valuable pursuits.
Acrylate monomer polymerization triggered by iron oxide magnetic nanoparticles and catechol containing microgels
Liu B, Zhang Z, Li B, Liu Q and Lee BP
Phenol and its derivatives are the most used polymerization inhibitors for vinyl-based monomers. Here, we reported a novel catalytic system composed of mussel inspired adhesive moiety, catechol, in combination with iron oxide nanoparticles (IONPs) to generate hydroxyl radical (•OH) at pH 7.4. Catechol-containing microgel (DHM) was prepared by copolymerizing dopamine methacrylamide (DMA) and -hydroxyethyl acrylamide (HEAA), which generated superoxide (•O) and hydrogen peroxide (HO) as a result of catechol oxidation. In the presence of IONPs, the generated reactive oxygen species were further converted to •OH, which initiated free radical polymerization of various water-soluble acrylate-based monomers including neutral (acrylamide, methyl acrylamide, etc.), anionic (2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt), cationic ([2-(methacryloyloxy)ethyl]trimethylammonium chloride), and zwitterionic (2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide) monomers. Compared with the typical free radical initiating systems, the reported system does not require the addition of extra initiators for polymerization. During the process of polymerization, a bilayer hydrogel was formed and exhibited the ability to bend during the process of swelling. The incorporation of IONPs significantly enhanced magnetic property of the hydrogel and the combination of DHM and IONPs also improved the mechanical properties of these hydrogels.
Engineering highly efficient NIR-II FRET platform for Background-Free homogeneous detection of SARS-CoV-2 neutralizing antibodies in whole blood
Zhao L, Song Q, Mai W, Deng M, Lei Y, Chen L, Kong W, Zhang L, Zhang L, Li Y, Ye H, Qin Y, Zhang T, Hu Y, Ji T and Wei W
Förster or fluorescence resonance energy transfer (FRET) enables to probe biomolecular interactions, thus playing a vital role in bioassays. However, conventional FRET platforms suffer from limited sensitivity due to the low FRET efficiency and poor anti-interference of existing FRET pairs. Here we report a NIR-II (1000-1700 nm) FRET platform with extremely high FRET efficiency and exceptional anti-interference capability. This NIR-II FRET platform is established based on a pair of lanthanides downshifting nanoparticles (DSNPs) by employing Nd doped DSNPs as an energy donor and Yb doped DSNPs as an energy acceptor. The maximum FRET efficiency of this well-engineered NIR-II FRET platform reaches up to 92.2%, which is much higher than most commonly used ones. Owing to the all-NIR advantage (λ = 808 nm, λ = 1064 nm), this highly efficient NIR-II FRET platform exhibits extraordinary anti-interference in whole blood, and thus enabling background-free homogeneous detection of SARS-CoV-2 neutralizing antibodies in clinical whole blood sample with high sensitivity (limit of detection = 0.5 μg/mL) and specificity. This work opens up new opportunities for realizing highly sensitive detection of various biomarkers in biological samples with severe background interference.
Superhydrophobic, stretchable kirigami pencil-on-paper multifunctional device platform
Xue Y, Wang Z, Dutta A, Chen X, Gao P, Li R, Yan J, Niu G, Wang Y, Du S, Cheng H and Yang L
Wearable electronics with applications in healthcare, human-machine interfaces, and robotics often explore complex manufacturing procedures and are not disposable. Although the use of conductive pencil patterns on cellulose paper provides inexpensive, disposable sensors, they have limited stretchability and are easily affected by variations in the ambient environment. This work presents the combination of pencil-on-paper with the hydrophobic fumed SiO (Hf-SiO) coating and stretchable kirigami structures from laser cutting to prepare a superhydrophobic, stretchable pencil-on-paper multifunctional sensing platform. The resulting sensor exhibits a large response to NO gas at elevated temperature from self-heating, which is minimally affected by the variations in the ambient temperature and relative humidity, as well as mechanical deformations such as bending and stretching states. The integrated temperature sensor and electrodes with the sensing platform can accurately detect temperature and electrophysiological signals to alert for adverse thermal effects and cardiopulmonary diseases. The thermal therapy and electrical stimulation provided by the platform can also deliver effective means to battle against inflammation/infection and treat chronic wounds. The superhydrophobic pencil-onpaper multifunctional device platform provides a low-cost, disposable solution to disease diagnostic confirmation and early treatment for personal and population health.
High-breathable, antimicrobial and water-repellent face mask for breath monitoring
Zhang F, Lin J, Yang M, Wang Y, Ye Z, He J, Shen J, Zhou X, Guo Z, Zhang Y and Wang B
Face masks with multiple functionalities and exceptional durability have attracted increasing interests during the COVID-19 pandemic. How to integrate the antibacterial property, comfortability during long-time wearing, and breath monitoring capability together on a face mask is still challenging. Here we developed a kind of face mask that assembles the particles-free water-repellent fabric, antibacterial fabric, and hidden breath monitoring device together, resulting in the highly breathable, water-repellent, and antibacterial face mask with breath monitoring capability. Based on the rational design of the functional layers, the mask shows exceptional repellency to micro-fogs generated during breathing while maintaining high air permeability and inhibiting the passage of bacteria-containing aerogel. More importantly, the multi-functional mask can also monitor the breath condition in a wireless and real-time fashion, and collect the breath information for epidemiological analysis. The resultant mask paves the way to develop multi-functional breath-monitoring masks that can aid the prevention of the secondary transmission of bacteria and viruses while preventing potential discomfort and face skin allergy during long-period wearing.
Multi-bioinspired hierarchical integrated hydrogel for passive fog harvesting and solar-driven seawater desalination
Zhang Y, Wang F, Yu Y, Wu J, Cai Y, Shi J, Morikawa H and Zhu C
In recent years, with the outbreak and epidemic of the novel coronavirus in the world, how to obtain clean water from the limited resources has become an urgent issue of concern to all mankind. Atmospheric water harvesting technology and solar-driven interfacial evaporation technology have shown great potential in seeking clean and sustainable water resources. Here, inspired by a variety of organisms in nature, a multi-functional hydrogel matrix composed of polyvinyl alcohol (PVA), sodium alginate (SA) cross-linked by borax as well as doped with zeolitic imidazolate framework material 67 (ZIF-67) and graphene owning macro/micro/nano hierarchical structure has successfully fabricated for producing clean water. The hydrogel not only can reach the average water harvesting ratio up to 22.44 g g under the condition of fog flow after 5 h, but also be capable of desorbing the harvested water with water release efficiency of 1.67 kg m h under 1 sun. In addition to excellent performance in passive fog harvesting, the evaporation rate over 1.89 kg m h is attained under 1 sun on natural seawater during long-term. This hydrogel indicates its potential in producing clean water resources in multiple scenarios in different dry or wet states, and which holds great promise for flexible electronic materials and sustainable sewage or wastewater treatment applications.
Totally-green cellulosic fiber with prominent sustained antibacterial and antiviral properties for potential use in spunlaced non-woven fabric production
Lan J, Wu Y, Lin C, Chen J, Zhu R, Ma X and Cao S
The worldwide spread of COVID-19 has put a higher requirement for personal medical protective clothing, developing protective clothing with sustained antibacterial and antiviral performance is the priority for safe and sustaining application. For this purpose, we develop a novel cellulose based material with sustained antibacterial and antiviral properties. In the proposed method, the chitosan oligosaccharide (COS) was subjected to a guanylation reaction with dicyandiamide in the presence of Scandium (III) triflate; because of the relatively lower molecular weight and water solubility of the COS, GCOS (guanylated chitosan oligosaccharide) with high substitution degree (DS) could be successfully synthetized without acid application. In this instance, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the GCOS were only 1/8 and 1/4 of that of COS. The introduction of GCOS onto the fiber endowed the fiber with extremely high antibacterial and antiviral performance, showing 100% bacteriostatic rate against and and 99.48% virus load reduction of bacteriophage MS2. More importantly, the GCOS modified cellulosic fibers (GCOS-CFs) exhibit excellent sustained antibacterial and antiviral properties; namely, 30 washing cycles had negligible effect on the bacteriostatic rate (100%) and inhibition rate of bacteriophage MS2 (99.0%). Moreover, the paper prepared from the GCOS-CFs still exhibited prominent antibacterial and antiviral activity; inferring that the sheeting forming, press, and drying process have almost no effect on the antibacterial and antiviral performances. The insensitive of antibacterial and antiviral activity to water washing (spunlace) and heat (drying) make the GCOS-CFs a potential material applicable in the spunlaced non-woven fabric production.
Controlled Lipid Self-Assembly for Scalable Manufacturing of Next-Generation Immune Stimulating Complexes
Pires IS, Ni K, Melo MB, Li N, Ben-Akiva E, Maiorino L, Dye J, Rodrigues KA, Yun D, Kim B, Hosn RR, Hammond PT and Irvine DJ
Immune stimulating complexes (ISCOMs) are safe and effective saponin-based adjuvants formed by the self-assembly of saponin, cholesterol, and phospholipids in water to form cage-like 30-40 nm diameter particles. Inclusion of the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA) in ISCOM particles yields a promising next-generation adjuvant termed Saponin-MPLA NanoParticles (SMNP). In this work, we detail protocols to produce ISCOMs or SMNP via a tangential flow filtration (TFF) process suitable for scalable synthesis and Good Manufacturing Practice (GMP) production of clinical-grade adjuvants. SMNP or ISCOM components were solubilized in micelles of the surfactant MEGA-10, then diluted below the critical micelle concentration (CMC) of the surfactant to drive ISCOM self-assembly. Assembly of ISCOM/SMNP particles using the purified saponin QS-21 used in clinical-grade saponin adjuvants was found to require controlled stepwise dilution of the initial micellar solution, to prevent formation of undesirable kinetically-trapped aggregate species. An optimized protocol gave yields of ~77% based on the initial feed of QS-21 and the final SMNP particle composition mirrored the feed ratios of the components. Further, samples were highly homogeneous with comparable quality to that of material prepared at lab scale by dialysis and purified via size-exclusion chromatography. This protocol may be useful for clinical preparation of ISCOM-based vaccine adjuvants and therapeutics.
Hybrid microneedle arrays for antibiotic and near-IR photothermal synergistic antimicrobial effect against Methicillin-Resistant
Ziesmer J, Larsson JV and Sotiriou GA
The rise of antibiotic-resistant skin and soft tissue infections (SSTIs) necessitates the development of novel treatments to improve the efficiency and delivery of antibiotics. The incorporation of photothermal agents such as plasmonic nanoparticles (NPs) improves the antibacterial efficiency of antibiotics through synergism with elevated temperatures. Hybrid microneedle (MN) arrays are promising local delivery platforms that enable co-therapy with therapeutic and photothermal agents. However, to-date, the majority of hybrid MNs have focused on the potential treatment of skin cancers, while suffering from the shortcoming of the intradermal release of photothermal agents. Here, we developed hybrid, two-layered MN arrays consisting of an outer water-soluble layer loaded with vancomycin (VAN) and an inner water-insoluble near-IR photothermal core. The photothermal core consists of flame-made plasmonic Au/SiO nanoaggregates and polymethylmethacrylate (PMMA). We analyzed the effect of the outer layer polymer, polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP), on MN morphology and performance. Hybrid MNs produced with 30 wt% PVA contain a highly drug-loaded outer shell allowing for the incorporation of VAN concentrations up to 100 mg g and temperature increases up to 60 °C under near-IR irradiation while showing sufficient mechanical strength for skin insertion. Furthermore, we studied the combinatorial effect of VAN and heat on the growth inhibition of methicillin-resistant (MRSA) showing synergistic inhibition between VAN and heat above 55 °C for 10 min. Finally, we show that treatment with hybrid MN arrays can inhibit the growth of MRSA due to the synergistic interaction of heat with VAN reducing the bacterial survival by up to 80%. This proof-of-concept study demonstrates the potential of hybrid, two-layered MN arrays as a novel treatment option for MRSA-associated skin infections.
Air-permeable redox mediated transcutaneous CO sensor
Ahuja P, Ujjain SK, Kukobat R, Urita K, Moriguchi I, Furuse A, Hattori Y, Fujimoto K, Rao G, Ge X, Wright T and Kaneko K
Standard clinical care of neonates and the ventilation status of human patients affected with coronavirus disease involves continuous CO monitoring. However, existing noninvasive methods are inadequate owing to the rigidity of hard-wired devices, insubstantial gas permeability and high operating temperature. Here, we report a cost-effective transcutaneous CO sensing device comprising elastomeric sponges impregnated with oxidized single-walled carbon nanotubes (oxSWCNTs)-based composites. The proposed device features a highly selective CO sensing response (detection limit 155 ± 15 ppb), excellent permeability and reliability under a large deformation. A follow-up prospective study not only offers measurement equivalency to existing clinical standards of CO monitoring but also provides important additional features. This new modality allowed for skin-to-skin care in neonates and room-temperature CO monitoring as compared with clinical standard monitoring system operating at high temperature to substantially enhance the quality for futuristic applications.
Oxygen-Generating Scaffolds: One Step Closer to the Clinical Translation of Tissue Engineered Products
Augustine R, Gezek M, Seray Bostanci N, Nguyen A and Camci-Unal G
The lack of oxygen supply in engineered constructs has been an ongoing challenge for tissue engineering and regenerative medicine. Upon implantation of an engineered tissue, spontaneous blood vessel formation does not happen rapidly, therefore, there is typically a limited availability of oxygen in engineered biomaterials. Providing oxygen in large tissue-engineered constructs is a major challenge that hinders the development of clinically relevant engineered tissues. Similarly, maintaining adequate oxygen levels in cell-laden tissue engineered products during transportation and storage is another hurdle. There is an unmet demand for functional scaffolds that could actively produce and deliver oxygen, attainable by incorporating oxygen-generating materials. Recent approaches include encapsulation of oxygen-generating agents such as solid peroxides, liquid peroxides, and fluorinated substances in the scaffolds. Recent approaches to mitigate the adverse effects, as well as achieving a sustained and controlled release of oxygen, are discussed. Importance of oxygen-generating materials in various tissue engineering approaches such as tissue engineering, tissue engineering, and bioprinting are highlighted in detail. In addition, the existing challenges, possible solutions, and future strategies that aim to design clinically relevant multifunctional oxygen-generating biomaterials are provided in this review paper.
In situ laser-assisted synthesis and patterning of graphene foam composites as a flexible gas sensing platform
Zhao J, Yi N, Ding X, Liu S, Zhu J, Castonguay AC, Gao Y, Zarzar LD and Cheng H
Gas-sensitive semiconducting nanomaterials (e.g., metal oxides, graphene oxides, and transition metal dichalcogenides) and their heterojunctions hold great promise in chemiresistive gas sensors. However, they often require a separate synthesis method (e.g., hydrothermal, so-gel, and co-precipitation) and their integration on interdigitated electrodes (IDE) via casting is also associated with weak interfacial properties. This work demonstrates in situ laser-assisted synthesis and patterning of various sensing nanomaterials and their heterojunctions on laser-induced graphene (LIG) foam to form LIG composites as a flexible and stretchable gas sensing platform. The porous LIG line or pattern with nanomaterial precursors dispensed on top is scribed by laser to allow for in situ growth of corresponding nanomaterials. The versatility of the proposed method is highlighted through the creation of different types of gas-sensitive materials, including transition metal dichalcogenide (e.g., MoS), metal oxide (e.g., CuO), noble metal-doped metal oxide (e.g., Ag/ZnO) and composite metal oxides (e.g., InO/CrO). By eliminating the IDE and separate heaters, the LIG gas sensing platform with self-heating also decreases the device complexity. The limit of detection (LOD) of the LIG gas sensor with in situ synthesized MoS, CuO, and Ag/ZnO to NO, HS, and trimethylamine (TMA) is 2.7, 9.8, and 5.6 ppb, respectively. Taken together with the high sensitivity, good selectivity, rapid response/recovery, and tunable operating temperature, the integrated LIG gas sensor array can identify multiple gas species in the environment or exhaled breath.
Hypoxia-responsive Immunostimulatory Nanomedicines Synergize with Checkpoint Blockade Immunotherapy for Potentiating Cancer Immunotherapy
Chen W, Sheng P, Chen Y, Liang Y, Wu S, Jia L, He X, Zhang CF, Wang CZ and Yuan CS
Inducing cell death while simultaneously enhancing antitumor immune responses is a promising therapeutic approach for multiple cancers. Celastrol (Cel) and 7-ethyl-10-hydroxycamptothecin (SN38) have contrasting physicochemical properties, but strong synergy in immunogenic cell death induction and anticancer activity. Herein, a hypoxia-sensitive nanosystem (CS@TAP) was designed to demonstrate effective immunotherapy for colorectal cancer by systemic delivery of an immunostimulatory chemotherapy combination. Furthermore, the combination of CS@TAP with anti-PD-L1 mAb (αPD-L1) exhibited a significant therapeutic benefit of delaying tumor growth and increased local doses of immunogenic signaling and T-cell infiltration, ultimately extending survival. We conclude that CS@TAP is an effective inducer of immunogenic cell death (ICD) in cancer immunotherapy. Therefore, this study provides an encouraging strategy to synergistically induce immunogenic cell death to enhance tumor cytotoxic T lymphocytes (CTLs) infiltration for anticancer immunotherapy.
Oxidation of chloroquine drug by ferrate: Kinetics, reaction mechanism and antibacterial activity
Dong F, Li J, Lin Q, Wang D, Li C, Shen Y, Zeng T and Song S
Chloroquine (CLQ) is required to manufacture on a larger scale to combat COVID-19. The wastewater containing CLQ will be discharged into the natural water, which was resistant to environmental degradation. Herein, the degradation of CLQ by ferrate (Fe(VI)) was investigated, and the biodegradability of the oxidation products was examined to evaluate the potential application in natural water treatment. The reaction between CLQ and Fe(VI) was pH-dependent and followed second-order kinetics. The species-specific rate constant of protonated Fe(VI) species (HFeO ) was higher than that of the FeO species. Moreover, increasing the reaction temperature could increase the degradation rate of CLQ. Besides, HCO had positive effect on CLQ removal, while HA had negative effect on CLQ removal. But the experiments shows Fe(VI) could be used as an efficient technique to degrade co-existing CLQ in natural waters. During the oxidation, Fe(VI) attack could lead to aromatic ring dealkylation and chloride ion substitution to form seven intermediate products by liquid chromatography-time-of-flight-mass spectrometry (LC-TOF-MS) determination. Finally, a pure culture test showed that the oxidation of CLQ by Fe(VI) could slightly increase the antimicrobial effect towards and reduce the toxicity risk of intermediates. These findings might provide helpful information for the environmental elimination of CLQ.