BIOCHEMICAL PHARMACOLOGY

Evaluation of UCP1162, a potent propargyl-linked inhibitor of dihydrofolate reductase with potential application to cancer and autoimmune disease
Ozcan Tezgin D, Kurkcu S, Si D, Krucinska J, Mosley A, Mehta P, Babic I, Nurmemmedov E, Kuo A, He W, Nelson CE, Wright L, Wright DL and Giardina C
Cellular resistance can limit the effectiveness of antifolate drugs for the treatment of cancer and autoimmune diseases. We examined the biochemical and cellular effects of a propargyl linked, non-classical antifolate UCP1162 that shows exceptional potency and resilience in the background of methotrexate resistance. UCP1162 inhibited the human DHFR enzyme with affinity and kinetics comparable to methotrexate (MTX). UCP1162 also inhibited cancer cell proliferation and bound cellular DHFR at low nanomolar concentrations. Leucovorin suppressed the cellular effects of UCP1162, consistent with UCP1162 working as an antifolate. Like other antifolates, UCP1162 reduced acute inflammation in mice and inhibited FLS cell growth and motility. Single cell RNA-seq showed that MTX and UCP1162 generated overlapping gene expression changes after a 48-hour exposure. However, while leukemia cells (CCRF-CEM) resistant to MTX could be readily selected, UCP1162-resistant cells could not be obtained. Long-term exposure to UCP1162 resulted in static culture expressing stem cell genes (CD34, ABCG2, ABCB1), adaptive genes (TCN2, CDKN1A), and genes that might serve as therapeutic targets (TPBG/5T4, TNFRSF10A, ACE). These findings suggest that UCP1162 is a unique tool for studying cellular responses to long-term antifolate treatment and holds promise as a lead compound capable of overcoming some forms of antifolate resistance.
PX-478 induces apoptosis in acute myeloid leukemia under hypoxia by inhibiting the PI3K/AKT/mTOR pathway through downregulation of GBE1
Liu W, Dou C, Zhang C, Chen P, Zhang S, Wang R, Han Q, Zhao H and Li D
Acute myeloid leukemia (AML) is a highly heterogeneous hematologic malignancy characterized by limited therapeutic options and a pronounced tendency for relapse. PX-478, a novel inhibitor of hypoxia-inducible factor 1-alpha (HIF-1α), has demonstrated antitumor activity across various cancer models, but its specific role in AML remains unexplored. This study aimed to explore the potential target and mechanism of PX-478-induced AML cell apoptosis. First, PX-478 induced AML cell apoptosis in vitro under hypoxia via modulation of the Bcl-2 family and activation of the mitochondria-mediated caspase cascade, exhibiting a concentration-dependent effect. Additionally, in vivo administration of PX-478 led to notable inhibition of subcutaneous AML xenograft growth in mice, coupled with increased tumor cell apoptosis. RNA sequencing and cellular studies revealed downregulation of the PI3K/AKT/mTOR signaling pathway in PX-478-treated cells. Consistently, cellular studies also implicated PI3K/AKT/mTOR pathway in PX-478-induced AML cell apoptosis. Furthermore, by screening for RNA sequencing differential genes and subsequent experimental verification, Glycogen branching enzyme 1 (GBE1) may be involved in PX-478-induced apoptosis in AML cells. We found that inhibiting GBE1 expression in AML cells (siGBE1) led to downregulation of the PI3K/AKT/mTOR pathway and induced apoptosis. In experiments using AML cells with reduced GBE1 expression (shGBE1), PX-478 treatment did not further downregulate the pathway or enhance apoptosis. Re-expression of GBE1 in shGBE1 cells alleviated apoptosis and reduced PX-478- induced apoptosis and pathway downregulation. In conclusion, our findings provide convincing evidence that PX-478 induces apoptosis by inhibiting the PI3K/AKT/mTOR pathway through downregulation of GBE1 in AML cells.
Interactions between glucagon like peptide 1 (GLP-1) and estrogens regulates lipid metabolism
Model JFA, Normann RS, Vogt ÉL, Dentz MV, de Amaral M, Xu R, Bachvaroff T, Spritzer PM, Chung JS and Vinagre AS
Obesity, characterized by excessive fat accumulation in white adipose tissue (WAT), is linked to numerous health issues, including insulin resistance (IR), and type 2 diabetes mellitus (DM2). The distribution of adipose tissue differs by sex, with men typically exhibiting android adiposity and pre-menopausal women displaying gynecoid adiposity. After menopause, women have an increased risk of developing android-type obesity, IR, and DM2. Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1RAs) are important in treating obesity and DM2 by regulating insulin secretion, impacting glucose and lipid metabolism. GLP-1Rs are found in various tissues including the pancreas, brain, and adipose tissue. Studies suggest GLP-1RAs and estrogen replacement therapies have similar effects on tissues like the liver, central nervous system, and WAT, probably by converging pathways involving protein kinases. To investigate these interactions, female rats underwent ovariectomy (OVR) to promote a state of estrogen deficiency. After 20 days, the rats were euthanized and the tissues were incubated with 10 μM of liraglutide, a GLP-1RA. Results showed significant changes in metabolic parameters: OVR increased lipid catabolism in perirenal WAT and basal lipolysis in subcutaneous WAT, while liraglutide treatment enhanced stimulated lipolysis in subcutaneous WAT. Liver responses included increased stimulated lipolysis with liraglutide. Transcriptome analysis revealed distinct gene expression patterns in WAT of OVR rats and those treated with GLP-1RA, highlighting pathways related to lipid and glucose metabolism. Functional enrichment analysis showed estrogen's pivotal role in these pathways, influencing genes involved in lipid metabolism regulation. Overall, the study underscores GLP-1RA acting directly on adipose tissues and highlights the complex interactions between GLP-1 and estrogen in regulating metabolism, suggesting potential synergistic therapeutic effects in treating metabolic disorders like obesity and DM2.
Andrographolide prevents renal fibrosis via decelerating lipotoxicity-mediated premature senescence of tubular epithelial cells
Yang M, Wu S, Dai Q, Qin W, Zhang Y, Lei Y, Song H, Zheng T, Guan M, Huang G and Liu X
Excessive lipid accumulation often occurs in the early stage of chronic kidney disease (CKD) which is prone to induce oxidative stress and mitochondrial damage, promoting the progression of kidney fibrosis. Andrographolide (AP), a multifunctional natural terpenoids derived from Andrographis paniculate, has been suggested to play beneficial roles in metabolic disorders-associated disease. Here, we reported that AP effectively counteracts tubule injury and interstitial fibrosis in mice fed with a long-term high-fat diet (HFD). AP treatment decreased HFD-induced lipid accumulation in kidney parenchyma and attenuated lipotoxicity-mediated oxidative stress and mitochondrial dysfunction, resulting in a marked decrease in tubular cell senescence. Importantly, AP inhibited senescence-associated secretory phenotype (SASP) secretion by senescent tubular cells, and in turn suppressed proliferation and activation of fibroblasts in a paracrine effect. Furthermore, we revealed that AP functions as an AMP-activated protein kinase (AMPK) activator to ameliorate renal lipid accumulation through coordinately modulating AMP-activated protein kinase AMPK target genes. By stimulation of AMPK activity, AP protects injured kidney against tubular cell senescence and fibroblast activation. These results suggest the potential therapeutic application of AP in the prevention and treatment of CKD, highlighting the promising drug strategy of targeting the lipotoxicity-mediated premature senescence in tubular cells.
Activated microglia secretome and proinflammatory cytokines increase neuronal mu-opioid receptor signalling and expression
Cuitavi J, Duart-Abadia P, Sanchez J, Sánchez-López CM, Lorente JD, Marcilla A, Fariñas I, Canals M and Hipólito L
Due to its potential role in processes which rely on mu-opioid receptor function, investigating the relationship between Mu-Opioid receptors (MORs), neuroinflammation, and glial cells has gained momentum. Traditionally, MOR activation has been associated with immunosuppression, but recent findings suggest a more nuanced, bidirectional relationship with the immune system. To further investigate this relationship, herein, we investigated the role of the activated microglia secretome and proinflammatory cytokines in neuronal MOR expression and signalling. Our results show that both microglial secretome and specific cytokines increase neuronal MOR expression and enhance the [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO)-induced MOR activation. We also show that DAMGO-induced neuroinflammation increases neuronal MOR expression, activation, and regulation. Our findings suggest a feedback loop between microglial activation, cytokine release, and neuronal MOR dynamics. Future research should delve into the temporal dynamics and functional implications of this relationship, particularly concerning clinically relevant opioids like morphine and fentanyl and pain management.
Unraveling the role of RIPKs in diabetic kidney diseases and its therapeutic perspectives
Ambujakshan A and Sahu BD
Nephropathy is the microvascular complication of diabetes mellitus and is the leading cause of chronic kidney disease. This review discusses the implications of receptor-interacting protein kinase (RIPK) family members and their regulation of inflammation and cell death pathways in the initiation and progression of diabetic kidney diseases. Hyperglycemia leads to reactive oxygen species (ROS) generation and RIPK1 overexpression, the first regulator of necroptosis. Further, RIPK1 can form complex I to promote nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) pathway activation or complex II to cause programmed cell death in the kidneys. The rise in RIPK1 level upon ROS generation declines the apoptosis regulators' level while the necroptosis regulators' level is boosted. Necroptosis is a programmed or controlled necrosis-type cell death pathway executed by RIPK1, RIPK3, and mixed lineage kinase domain-like (MLKL) proteins, and recent research suggests its importance in diabetic nephropathy. In necroptosis, RIPK1 and RIPK3 interrelate with their RIP homotypic interaction motif (RHIM) domains and cause the recruitment of MLKL. Next, MLKL gets oligomerized, migrates toward the plasma membrane, and causes its rupture. We also emphasized different research studies on drugs highlighting the nephroprotective effects via regulating the RIPKs. We hope that the conclusions of this review may provide new strategies for diabetic kidney disease treatment and promising targets for drug development based on necroptosis.
Role of Relaxin Signaling in Cancer: A Review
Kotwal A, Goldner WS and Bennett RG
The investigation into relaxin (RLN), additional RLN-like proteins, and RLN family peptide receptors (RXFP) has demonstrated their role in modulating the extracellular matrix (ECM), immune cells, specifically macrophages, and angiogenesis, with recent evidence showing an effect on signaling pathways in tumor cells. These findings serve as the basis for our narrative review to collate pertinent studies in this field and provide our perspective on their clinical and investigational significance. In the article, we discuss findings from pertinent studies focusing on evaluating the expression or effect of RLN1, RLN2, or RXFP1 in various cancers. We also briefly discuss the potential role that other RLN family peptides and their receptors play in cancer. Specifically, we delve into questions regarding RLN signaling in terms of parity/pregnancy-associated protection from mammary tumors, expression in tumors, detection in serum in the setting of cancers, effect on tumor-adjacent cells, effect on tumorigenesis depending on endogenous expression or delivery, and last, but not the least, impact on the effectiveness of anti-cancer therapies. We expect that summarizing the available literature to answer these questions will allow readers to understand the role of RLN-receptor interaction in cancer as well as identify areas of uncertainty and avenues for future investigation.
Detailed functional characterization of four nanobodies as positive allosteric modulators of the human Calcium-Sensing receptor
Du W, Rahman SN, Barker E, Bräuner-Osborne H, Mathiesen JM, Ward DT and Jensen AA
The calcium-sensing receptor (CaSR) plays a key role in calcium homeostasis, and small-molecule and peptide positive allosteric modulators (PAMs) of CaSR, so-called calcimimetics, are used in the treatment of hyperparathyroidism and hypocalcemic disorders. In this study, four monovalent nanobodies - representing four distinct nanobody families with CaSR PAM activity - were subjected to elaborate pharmacological profiling at the receptor. While Nb5 displayed negligible PAM activity at CaSR in all assays, Nb4, Nb10 and Nb45 all potently potentiated Ca-evoked signalling through a myc epitope-tagged CaSR expressed in HEK293 or HEK293T cells in Gα and Gα protein activation assays and in a Ca/Fluo-4 assay. Nb4 and Nb10 also displayed comparable PAM properties at a stable CaSR-HEK293 cell line in a Ca/Fura-2 imaging assay, but surprisingly Nb45 was completely inactive at this cell line in both the Ca/Fura-2 and Ca/Fluo-4 assays. Investigations into this binary difference in Nb45 activity revealed that the nanobody only possesses modulatory activity at CaSRs tagged N-terminally with various epitopes (myc, HA, Flag-SNAP), whereas it is inactive at the untagged wild-type receptor. In conclusion, overall each of the nanobodies exhibit similar CaSR PAM properties in a range of assays, and thus none of them display pathway bias as modulators. However, of the four nanobodies Nb4 and Nb10 would be applicable as pharmacological tools for the wild-type CaSR, and the complete inactivity of Nb45 at the untagged CaSR serves as an reminder that epitope-tagging of a receptor, even if deemed functionally silent, can have profound implications for ligand discovery efforts.
An Island of Reil excitation: Mapping glutamatergic (vGlut1+ and vGlut2+) connections in the medial insular cortex
O'Shea MJ, Anversa RG, Ch'ng SS, Campbell EJ, Walker LC, Andrews ZB, Lawrence AJ and Brown RM
The insular cortex is a multifunctional and richly connected region of the cerebral cortex, critical in the neural integration of external stimuli and internal signals. Well-served for this role by a large network of afferent and efferent connections, the mouse insula can be simplified into an anterior, medial and posterior portion. Here we focus on the medial subregion, a once over-looked area that has gained recent attention for its involvement in an array of behaviours. Although the connections of medial insular cortex neurons have been previously identified, their precise glutamatergic phenotype remains undefined (typically defined by the presence of the subtype of vesicular glutamate transporters). Hence, we combined Cre knock-in mouse lines and adeno-associated viral tracing to distinguish between the expression of the two major vesicular glutamate transporters, type 1 (vGlut1) and 2 (vGlut2), in the subregion's neuronal inputs and outputs. Our results determined that the medial insula has extensive glutamatergic efferents expressing both vGlut1 and vGlut2 throughout the neuraxis. In contrast, a more conservative number of glutamatergic inputs were observed, with exclusively vGlut2+ projections received from hypothalamic and thalamic regions. Taken together, we demonstrate that vGlut1- and vGlut2-expressing networks of this insular subdivision have distinct connectivity patterns, including a greater abundance of vGlut1+ fibres innervating hypothalamic regions and the extended amygdala. These findings provide insight into the distinct chemo-architecture of this region, which may facilitate further investigation into the role of the medial insula in complex behaviour.
Exploring heat shock proteins as therapeutic targets for Parkinson's disease
Li X, Wang W, Pan S, Cao X, Thomas ER, Xie M, Zhang C and Wu J
Parkinson's disease (PD) is characterized by the accumulation of misfolded α-synuclein (α-syn). Promoting the degradation of misfolded proteins has been shown to be an effective approach to alleviate PD. This review highlights the roles of specific heat shock proteins (HSPs) in modulating α-syn aggregation and neuronal survival. HSP27 prevents glycosylation-induced α-syn aggregation, disrupts copper ion interactions, inhibits mitochondrial apoptosis, and prevents dopaminergic neuronal cell death. HSP70 alleviates dopaminergic neuronal damage by promoting mitophagy and preventing neuronal apoptosis. HSC70 plays a critical role in chaperone-mediated autophagy and facilitates lysosomal degradation. GRP78 mitigates abnormal protein aggregation. The HSP70-HSP40-HSP110 system is capable of degrading α-syn amyloid fibers. Inhibition of HSP90 expression protects neurons. Further research should prioritize developing regulators of HSPs as treatments for PD. While HSPs offer promise in PD management, their complex roles necessitate cautious therapeutic development to harness their potential. Understanding the specific roles of different HSPs will be essential to developing effective therapies for α-syn clearance.
Recent discoveries of propyl gallate restore the antibacterial effect of tigecycline against tet(X4)-positive Escherichia coli
Liu Z, Zhou Q, Xue J, Cui M, Xu L, Fang T, Wen Z, Li D, Wang J, Deng X and Zhou Y
Propyl gallate (PG), an approved food additive, can be added to different foods and drugs to provide health benefits with minimal danger. However, no clinical application of PG as an antibacterial agent for the treatment of antimicrobial resistance (AMR) has been documented. The aim of this study was to elucidate the effects and mechanisms by which PG inhibits the activity of Tet(X4). Enzyme activity inhibition assay, antimicrobial tests, scanning electron microscopy (SEM) assay, molecular docking and dynamics simulation assays, and animal infection models were used to confirm the synergistic efficacy and mechanism. Here, we found that PG efficiently inhibited Tet(X4) enzyme activity (IC = 34.83 μg/mL) while affecting the expression of tet(X4). PG has a synergistic effect with tigecycline (fractional inhibitory concentration index (FICI) < 0.5) against tet(X4)-positive Escherichia coli (E. coli) isolates of animal origin. The survival rates of G. mellonella larvae and the mouse systemic infection model increased by 60 % and 39 %, respectively. The combination of PG and tigecycline showed remarkable treatment benefits in terms of the bacterial load and inflammatory factors in mice. Our results indicate that PG is a valuable adjuvant with tetracyclines and can be considered to address the inevitable infection caused by tet(X4)-positive bacteria, which is a feasible way to extend the lifespan of existing antibiotics.
Scopoletin ameliorates hyperlipidemia and hepatic steatosis via AMPK, Nrf2/HO-1 and NF-κB signaling pathways
Zhang J, Yuan Y, Gao X, Li H, Yuan F, Wu D, Cui Q, Piao G and Yuan H
Scopoletin (SC) is one of the important phenolic coumarin constituents derived from many edible plants and fruits, and exerts a wide range of biological activities. In the present study, we investigated the effects of SC on tyloxapol (TY)-induced hyperlipidemia and hepatic steatosis in C57BL/6j mice and free fatty acid (FFA) 0.5 mM-stimulated lipid accumulation in human L02 cells. Our results showed that TY injection significantly increased serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), triglyceride (TG), total cholesterol (TC), low density lipoprotein (LDL-C) as well as malondialdehyde (MDA) in the livers of the mice (p < 0.001, respectively), and decreased serum levels of high density lipoprotein (HDL-C), IL-10 levels as well as superoxide dismutase (SOD) in the livers (p < 0.001, respectively). On the other hand, SC pretreatment reversed these changes. SC obviously alleviated TY-induced liver steatosis by upregulating the AMP-activated kinase (AMPK), acetyl-CoA carboxylase (ACC) phosphorylation, and significantly downregulated sterol regulatory element binding protein (SREBP)1c and fatty acid synthase (FAS), stearoyl-CoA desaturase 1 (SCD1), Lipin 1, phospho-hormone-sensitive triglyceride lipase (p-HSL) proteins and SREBP-2, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) mRNA expressions. In the meantime, SC upregulated the expressions of the lipolysis-associated genes LDL receptor (LDLR), adipose triglyceride lipase (ATGL), and HSL. In addition, SC significantly inhibited TNF-α, F4/80, caspase-1 (cas-1), cas-1p10, IL-1β, Kelch-like ECH-associated protein 1 (Keap1) expressions, nuclear factor-kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) translocation, and increased heme oxygenase 1 (HO-1) expressions in TY-induced hyperlipidemia and hepatic steatosis mice. The in vivo results were similar to that those in the in vitro experiment, for example, SC markedly lowered TG and TC levels and protected lipid accumulation via AMPK, NF-κB, and Nrf2/HO-1 signaling pathway in FFA-induced L02 cells. These results indicate that SC has protective potential against hyperlipidemia and hepatic steatosis, and the underlying mechanism may be closely associated with AMPK activation and Nrf2/HO-1 and NF-κB inhibition.
Verteporfin combined with ROCK inhibitor promotes the restoration of corneal endothelial cell dysfunction in rats
Zhang X, Liu H, Wan C, Li Y, Ren C, Lu J, Liu Y and Yang Y
Corneal endothelial cells (CECs) dysfunction frequently results in a hazy, edematous cornea due to corneal endothelial decompensation and is a major cause of corneal blindness. Drug interventions provide a less invasive alternative to corneal transplantation surgery. However, endothelial-to-mesenchymal transition (EndMT) limits CECs function. Rho-kinase (ROCK) inhibitors, shown in numerous studies to be an adjunctive therapy for CECs dysfunction, cannot completely reverse pathological EndMT caused by inflammatory environmental damage. Verteporfin (VP) is an inhibitor of Yes-associated protein (YAP) and has significant inhibitory effects on cell fibrosis and mesenchymal transition. Here, we explored VP's utility in mitigating EndMT during ROCK inhibitors treatment of corneal endothelial dysfunction. We surgically constructed a rat model of CECs injury and studied VP and ROCK inhibitors' effects on EndMT, cell proliferation, and corneal edema using RNA-Seq sequencing, immunofluorescence, optical coherence tomography, and qPCR. The results indicated that YAP expression in human fetal CECs was higher than in adults and decreased with age in rats. Moreover, YAP expression in human CECs was negatively correlated with functional genes, such as AQP1 and ATP1A1. VP effectively reversed EndMT and accelerated corneal hydration regression. However, it inhibited CECs proliferation. We also confirmed that the optimal ratio of VP combined with Y-27632 (ROCK inhibitor) was 1:1, promoting CECs proliferation and reversing EndMT by down-regulating transcription factors downstream of TGF-β signaling, thereby increasing CECs functional and intercellular adhesion proteins. These combined effects promote corneal endothelial damage repair, providing a new treatment strategy.
Unveiling the potential of intranasal delivery of renin-angiotensin system drugs: Insights on the pharmacokinetics of irbesartan
Gouveia F, Carona A, Lacerda M, Bicker J, Camins A, Teresa Cruz M, Ettcheto M, Falcão A and Fortuna A
The therapeutic interest of renin-angiotensin system (RAS) drugs for the treatment of neuroinflammation has been recently acknowledged. Nevertheless, most of them display limited passage across the blood-brain barrier (BBB). Therefore, this study investigated the potential of intranasal (IN) delivery of six RAS drugs to circumvent the BBB and attain the brain, envisioning its future use in central nervous system (CNS) neuroinflammatory diseases, such as Alzheimer's disease (AD). Captopril, enalaprilat, irbesartan, lisinopril, losartan and valsartan were firstly screened based on their impact on the viability of nasal, lung, and neuronal cell lines and their apparent permeability (P) across porcine olfactory mucosa. Irbesartan, identified as the one with the best safety and permeability balance, was selected for pharmacokinetic characterization following single and multidose IN administration to CD-1 mice. The results were compared to those obtained by intravenous (IV) injection to assess direct nose-to-brain drug delivery. Olfactory toxicity and anxiety were also evaluated after multidose IN treatment. Irbesartan IN administration significantly enhanced brain targeting, with a 3-fold increase in the maximum concentration (C) and a 2.5-fold increase in the area under the curve (AUC) in the brain compared to IV route. The drug exhibited a t of 15 min post-IN administration and achieved a brain targeting efficiency of 239.56%, with a significant direct transport percentage of 58.26%. Multidose administration indicated no systemic or tissue accumulation, with accumulation ratio (R) values below 1.0, and no significant olfactory toxicity. Overall, the study highlights the potential of IN delivery of irbesartan as a promising strategy to improve brain targeting and therapeutic outcomes in CNS diseases such as AD, providing an effective approach to bypass BBB limitations.
3,4,5-trimethoxycinnamic acid methyl ester isolated from Polygala tenuifolia enhances hippocampal LTP through PKA and calcium-permeable AMPA receptor
Lee Y, Jeon J, Son SR, Cho E, Moon S, Park AY, Chae HJ, Bae HJ, Moon M, Jeon SJ, Jang DS and Kim DH
Alzheimer's disease (AD) is a degenerative brain disorder characterized by progressive cognitive decline and neuronal death due to extracellular deposition of amyloid β (Aβ) and intracellular deposition of tau proteins. Recently approved antibody drugs targeting Aβ have been shown to slow the progression of the disease, but they have minimal effects on cognitive improvement. Therefore, there is a need to develop drugs with cognitive-enhancing effects that can be used in conjunction with these antibody treatments. In this study, we investigated whether Polygala tenuifolia (PT), traditionally known for its cognitive-enhancing effects, can improve synaptic plasticity and identified its active components and mechanisms. PT demonstrated a dose-dependent effect in enhancing long-term potentiation (LTP), and among its components, 3,4,5-trimethoxycinnamic acid methyl ester (TMCA) showed a similar LTP-enhancing effect. TMCA increased the phosphorylation of the GluA1 subunit of the α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and increased the amount of GluA1 on the synapse without affecting the amount of GluA2. Additionally, the increase in GluA1 induced by TMCA was inhibited by a PKA inhibitor. Consistent with these results, the enhancement of LTP by TMCA was inhibited by a GluA1 antagonist and a PKA inhibitor. In silico molecular docking experiments confirmed that TMCA binds to PKA. Finally, we confirmed the LTP-enhancing effect of TMCA in hippocampal slices from 5XFAD mice. These results suggest that PT and its active component, TMCA, can interact with PKA to enhance LTP, indicating the potential for improving cognitive function in AD patients.
3,3'-Diindolylmethane promotes bone formation - A assessment in MC3T3-E1 cells and zebrafish
Ma Y, Zhu Y, Wang F, Zhao G, Huang L, Lu R, Wang D, Tian X and Ye Y
Osteoporosis is a common degenerative bone disease in middle-aged and elderly people. The current drugs used to treat osteoporosis have many side effects and low patient compliance. Phytochemotherapy may be safer and more effective. 3,3'-diindolemethane (DIM) is the digestive product of indole-3-methanol in cruciferous vegetables in the stomach, which is a kind of anti-tumor and anti-oxidation phytochemical. However, the effects of DIM on osteoblasts and the mechanism by which DIM regulates bone formation are not fully understood. The aim of this study was to investigate the effects of DIM on the bone formation of mouse preosteoblasts MC3T3-E1 and zebrafish. DIM promotes proliferation and osteogenic differentiation of MC3T3-E1 cells in vitro, and also plays a bone promoting role by increasing the interaction between BRCA1-Associated Protein 1(BAP1) and Inositol 1,4,5-Trisphosphate Receptor(IP3R), up-regulating the expression of BAP1 and IP3R and downstream storage operation calcium entry (SOCE) related protein Recombinant Stromal Interaction Molecule 1(STIM1). The effect of DIM on osteoporosis was confirmed in zebrafish osteoporosis model, and its molecular mechanism may be related to BAP1/IP3R/SOCE signaling pathway. These findings highlight the potential therapeutic value of DIM in the prevention and treatment of osteoporosis.
Crosstalk between non-coding RNA and apoptotic signaling in diabetic nephropathy
Zhang K, Wu D and Huang C
Diabetic nephropathy (DN) is a leading cause of end-stage renal disease in diabetes mellitus. It is also a significant contributor to cardiovascular morbidity and mortality in diabetic patients Thereby, Innovative therapeutic approaches are needed to retard the initiation and advancement of DN. Hyperglycemia can induce apoptosis, a regulated form of cell death, in multiple renal cell types, such as podocytes, mesangial cells, and proximal tubule epithelial cells, ultimately contributing to the pathogenesis of DN. Recent genome-wide investigations have revealed the widespread transcription of the human genome, resulting in the production of numerous regulatory non-protein-coding RNAs (ncRNAs), including microRNAs (miRNAs) and diverse categories of long non-coding RNAs (lncRNAs). They play a critical role in preserving physiological homeostasis, while their dysregulation has been implicated in a broad spectrum of disorders, including DN. Considering the established association between apoptotic processes and the expression of ncRNAs in DN, a thorough understanding of their intricate interplay is essential. Therefore, the current work thoroughly analyzes the intricate interplay among miRNAs, lncRNAs, and circular RNAs in the context of apoptosis within the pathogenesis of DN. Additionally, in the final section, we demonstrated that ncRNA-mediated modulation of apoptosis can be achieved through stem cell-derived exosomes and herbal medicines, presenting potential avenues for the treatment of DN.
Heat shock protein 27 downregulation attenuates isoprenaline-induced myocardial fibrosis and diastolic dysfunction by modulating the endothelial-mesenchymal transition
Zou Y, Shi H, Li Y, Li T, Liu N and Liu B
Heart failure (HF), an end-stage clinical syndrome secondary to cardiac impairment, significantly affects patients' quality of life and long-term prognosis. Myocardial fibrosis leads to systolic and diastolic dysfunction, and promotes the progression of HF. Several studies involving the modulation of myocardial fibrosis have been conducted in an effort to improve cardiac function. Heat shock protein 27 (HSP27) is a small chaperone protein that is overexpressed in cellular stress states. HSP27 modulates epithelial-mesenchymal transition, playing a crucial role in the pathology of several fibrotic diseases. However, its association with myocardial fibrosis regulation is unknown. This study aimed to investigate the mechanisms by which HSP27 regulates myocardial fibrosis. We created cardiac-specific HSP25 (the murine ortholog of human HSP27) knockout mice and found that HSP25 knockdown inhibited endothelial-mesenchymal transition (EndMT), attenuated myocardial fibrosis, and ameliorated diastolic dysfunction in isoproterenol-induced HF mice via echocardiography, histology, and western bloting. In vitro, HSP27 knockdown attenuated transforming growth factor beta-induced EndMT, whereas HSP27 overexpression promoted EndMT. Furthermore, the SMAD3/SNAIL1 pathway was found to be crucial for HSP27-mediated EndMT regulation. As an essential molecule in EndMT regulation and myocardial fibrosis modulation, HSP27 may hold promise as a therapeutic target for patients with HF.
C1QTNF Related protein 8 (CTRP8) is a marker of myeloid derived innate immune cell populations in the human breast cancer microenvironment
Arreza L, Thanasupawat T, Krishnan SN, Kraljevic M, Klonisch T and Hombach-Klonisch S
Innate immune cells in the tumor microenvironment (TME) play an important role in breast cancer (BC) metastatic spread and influence patient survival. Macrophages differentiate along a proinflammatory M1 to protumorigenic M2 phenotype spectrum which affects distinct functions, like angiogenesis and cytokine production, and modulates BC aggressiveness and affects patient survival. Mast cells (MCs) are myeloid derived cells that serve as the first line of innate immune defense but their role in the TME of BC is not well understood. In this study, we have identified a subpopulation of innate immune cells that shows strong immunopositivity for the least studied adipokine CTRP8. Using a new and highly specific polyclonal antiserum on patient BC tissues, we identify a subset of tryptase + MCs and CD68 + macrophages co-expressing immunoreactive CTRP8. In M1 polarized THP-1 myeloid cells, this adipokine stimulated increased secretion of pro-inflammatory cytokines and elevated expression of the relaxin/ CTRP8 receptor RXFP1. Comparative analysis of secreted cytokine profiles in THP-1 M1 macrophages exposed to either CTRP8, relaxin-2 (RLN2), or the small molecule RXFP1 agonist ML-290 revealed ligand-specific cytokine signatures. Our study identified novel subsets of CTRP8 + myeloid derived innate immune cells and links this adipokine to pro-inflammatory events in the TME of BC.
Yohimbine treatment improves pulmonary fibrosis by attenuating the inflammation and oxidative stress via modulating the MAPK pathway
Kambhampati V, Eedara A and Andugulapati SB
Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disorder characterized by the accumulation of extracellular matrix and collagen, resulting in significant parenchymal scarring and respiratory failure that leads to mortality. Yohimbine (YBH) is an α-2 adrenergic receptor antagonist with anti-oxidant and anti-inflammatory properties. In the current study, we aimed to investigate the anti-inflammatory, anti-oxidant and anti-fibrotic activity of YBH against LPS/TGF-β-induced differentiation in BEAS-2B/LL29 cells and bleomycin (BLMN) induced pulmonary fibrosis model in rats. Network pharmacology, gene expression, Western-blot analysis, immune-cytochemistry/immunohistochemistry, lung functional analysis, and histology techniques were used to assess the fibrotic marker expression/levels in cells or rat lung tissues. YBH treatment significantly attenuated the LPS-induced pro-inflammatory (identified through a network-pharmacology approach) and oxidative stress markers expression in lung epithelial cells. TGF-β stimulation significantly elevated the fibrotic cascade of markers and treatment with YBH attenuated these markers' expression/levels. Intra-tracheal administration of BLMN caused a significant elevation of various inflammatory/oxidative stress and fibrotic markers expression in lung tissues and treatment with YBH significantly mitigated the same. Ashcroft score analysis revealed that BLMN exhibited severe distortion of the lungs, elevation of thickness of the alveolar walls and accumulation of collagen in tissues, further treatment with YBH significantly suppressed these events and improved the lung architecture. Lung functional parameters demonstrated that BLMN-induced stiffness and resistance were reduced considerably upon YBH treatment and restored lung function dose-dependently. Overall, this study reveals that YBH treatment significantly attenuated the BLMN-induced fibrosis by regulating the MAPK pathway and provided insightful information for progressing towards translational outcomes.
AHR suppresses cisplatin-induced apoptosis in ovarian cancer cells by regulating XIAP
Shen G, Xu S, Zhu A, Zheng Z, Chen W and Jiang S
X-linked inhibitor of apoptosis protein (XIAP) plays a crucial role in cisplatin-induced apoptosis in ovarian cancer, whereas the molecular mechanism of how its expression is dysregulated remains unclear. Here, we report that the aryl hydrocarbon receptor (AHR) acts as a competitive endogenous RNA (ceRNA) of XIAP and can regulate its expression. Overexpression of AHR 3'UTR decreased, while AHR knockdown increased, the cisplatin-induced apoptotic rate in ovarian cancer cells. We also found that one microRNA (miRNA), miR-142-5p, can bind to both AHR and XIAP 3'UTRs and regulate their expression levels. Furthermore, AHR 3'UTR and miR-142-5p can occupy the same Ago2 to form an RNA-induced silencing complex (RISC). In addition, we showed that the effect of AHR overexpression on cisplatin-induced apoptosis could be rescued by either XIAP siRNA or miR-142-5p mimic. Thus, our findings reveal important insights into the molecular mechanism underlying the dysregulation of XIAP in ovarian cancer, indicating that AHR serves as the ceRNA that competes miR-142-5p with XIAP and subsequently affects the platinum-based chemotherapy.