BIOCHEMICAL ENGINEERING JOURNAL

Evaluation of the efficiency of various methods to load fluoroquinolones into outer membrane vesicles as a novel antibiotic delivery platform
Wu M, Holgado L, Harrower RM and Brown AC
The development of novel antibacterial agents that are effective against Gram-negative bacteria is limited primarily by transport issues. This class of bacteria maintains a complex cell envelope consisting of two membrane bilayers, preventing the passage of most antibiotics. These drugs must therefore pass through protein channels called porins; however, many antibiotics are too large to pass through porins, and a common mechanism of acquired resistance is down-regulation of porins. To overcome this transport limitation, we have proposed the use of outer membrane vesicles (OMVs), released by Gram-negative bacteria, which deliver cargo to other bacterial cells in a porin-independent manner. In this work, we systematically studied the ability to load fluoroquinolones into purified OMVs using and passive loading methods, and active loading methods such as electroporation and sonication. We observed limited loading of all of the antibiotics using passive loading techniques; sonication and electroporation significantly increased the loading, with electroporation at low voltages (200 and 400V) resulting in the greatest encapsulation efficiencies. We also demonstrated that imipenem, a carbapenem antibiotic, can be readily loaded into OMVs, and its administration via OMVs increases the effectiveness of the drug against . Our results demonstrate that small molecule antibiotics can be readily incorporated into OMVs to create novel delivery vehicles to improve antibiotic activity.
The Role of Endoplasmic Reticulum Stress on Reducing Recombinant Protein Production in Mammalian Cells
Splichal RC, Chen K, Walton SP and Chan C
Therapeutic recombinant protein production relies on industrial scale culture of mammalian cells to produce active proteins in quantities sufficient for clinical use. The combination of stresses from industrial cell culture environment and recombinant protein production can overwhelm the protein synthesis machinery in the endoplasmic reticulum (ER). This leads to a buildup of improperly folded proteins which induces ER stress. Cells respond to ER stress by activating the Unfolded Protein Response (UPR). To restore proteostasis, ER sensor proteins reduce global protein synthesis and increase chaperone protein synthesis, and if that is insufficient the proteins are degraded. If proteostasis is still not restored, apoptosis is initiated. Increasing evidence suggests crosstalk between ER proteostasis and DNA damage repair (DDR) pathways. External factors (e.g., metabolites) from the cellular environment as well as internal factors (e.g., transgene copy number) can impact genome stability. Failure to maintain genome integrity reduces cell viability and in turn protein production. This review focuses on the association between ER stress and processes that affect protein production and secretion. The processes mediated by ER stress, including inhibition of global protein translation, chaperone protein production, degradation of misfolded proteins, DNA repair, and protein secretion, impact recombinant protein production. Recombinant protein production can be reduced by ER stress through increased autophagy and protein degradation, reduced protein secretion, and reduced DDR response.
Incorporating a β-hairpin sequence motif to increase intracellular stability of a peptide-based PROTAC
Hymel HC, Anderson JC, Liu D, Gauthier TJ and Melvin AT
Proteolysis targeting chimeras (PROTACs) have emerged as a new class of therapeutics that utilize the ubiquitin-proteasome system (UPS) to facilitate proteasomal degradation of "undruggable" targets. Peptide-based PROTACs contain three essential components: a binding motif for the target protein, a short amino acid sequence recognized by an E3 ligase called a degron, and a cell penetrating peptide to facilitate uptake into intact cells. While peptide-based PROTACs have been shown to successfully degrade numerous targets, they have often been found to exhibit low cell permeability and high protease susceptibility. Prior work identified peptides containing a β-hairpin sequence motif that function not only as protecting elements, but also as CPPs and degrons. The goal of this study was to investigate if a β-hairpin sequence could replace commonly used unstructured peptides sequences as the degron and the CPP needed for PROTAC uptake and function. The degradation of the protein Tau was selected as a model system as several published works have identified a Tau binding element that could easily be conjugated to the β-hairpin sequence. A series of time- and concentration-dependent studies confirmed that the βhairpin sequence was an adequate alternative CPP and degron to facilitate the proteasomemediated degradation of Tau. Microscopy studies confirmed the time-dependent uptake of the PROTAC and a degradation assay confirmed that the β-hairpin conjugated PROTAC had a greater lifetime in cells.
Engineering Alkaline-Stable Barley Stripe Mosaic Virus-Like Particles for Efficient Surface Modification
Vaidya AJ, Rammohan M, Lee YH, Lee KZ, Chou CY, Hartley Z, Scott CA, Susler RG, Wang L, Loesch-Fries LS, Harris MT and Solomon KV
Viruses and virus-like particles are powerful templates for materials synthesis because of their capacity for precise protein engineering and diverse surface functionalization. We recently developed a recombinant bacterial expression system for the production of barley stripe mosaic virus-like particles (BSMV VLPs). However, the applicability of this biotemplate was limited by low stability in alkaline conditions and a lack of chemical handles for ligand attachment. Here, we identify and validate novel residues in the BSMV Caspar carboxylate clusters that mediate virion disassembly through repulsive interactions at high pH. Point mutations of these residues to create attractive interactions that increase rod length ~2 fold, with an average rod length of 91 nm under alkaline conditions. To enable diverse chemical surface functionalization, we also introduce reactive lysine residues at the C-terminus of BSMV coat protein, which is presented on the VLP surface. Chemical conjugation reactions with this lysine proceed more quickly under alkaline conditions. Thus, our alkaline-stable VLP mutants are more suitable for rapid surface functionalization of long nanorods. This work validates novel residues involved in BSMV VLP assembly and demonstrates the feasibility of chemical functionalization of BSMV VLPs for the first time, enabling novel biomedical and chemical applications.
Bioreactor Expansion Reconfigures Metabolism and Extracellular Vesicle Biogenesis of Human Adipose-derived Stem Cells In Vitro
Jeske R, Chen X, Ma S, Zeng EZ, Driscoll T and Li Y
Human mesenchymal stem cells (hMSCs), including human adipose tissue-derived stem cells (hASCs), as well as the secreted extracellular vesicles (EVs), are promising therapeutics in treating inflammatory and neural degenerative diseases. However, prolonged expansion can lead to cellular senescence characterized by a gradual loss of self-renewal ability while altering secretome composition and EV generation. Additionally, hMSCs are highly sensitive to biophysical microenvironment in bioreactor systems utilized in scaling production. In this study, hASCs grown on Plastic Plus or Synthemax II microcarriers in a spinner flask bioreactor (SFB) system were compared to traditional 2D culture. The SFB microenvironment was found to increase the expression of genes associated with hASC stemness, nicotinamide adenine dinucleotide (NAD+) metabolism, glycolysis, and the pentose phosphate pathway as well as alter cytokine secretion (, PGE2 and CXCL10). Elevated reactive oxidative species levels in hASCs of SFB culture were observed without increasing rates of cellular senescence. Expression levels of Sirtuins responsible for preventing cellular senescence through anti-oxidant and DNA repair mechanisms were also elevated in SFB cultures. In particular, the EV biogenesis genes were significantly upregulated (3-10 fold) and the EV production increased 40% per cell in SFB cultures of hASCs. This study provides advanced understanding of hASC sensitivity to the bioreactor microenvironment for EV production and bio-manufacturing towards the applications in treating inflammatory and neural degenerative diseases.
Engineered multivalent self-assembled binder protein against SARS-CoV-2 RBD
Britton D, Punia K, Mahmoudinobar F, Tada T, Jiang X, Renfrew PD, Bonneau R, Landau NR, Kong XP and Montclare JK
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic since December 2019, and with it, a push for innovations in rapid testing and neutralizing antibody treatments in an effort to solve the spread and fatality of the disease. One such solution to both of these prevailing issues is targeting the interaction of SARS-CoV-2 spike receptor binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2) receptor protein. Structural studies have shown that the N-terminal alpha-helix comprised of the first 23 residues of ACE2 plays an important role in this interaction. Where it is typical to design a binding domain to fit a target, we have engineered a protein that relies on multivalency rather than the sensitivity of a monomeric ligand to provide avidity to its target by fusing the N-terminal helix of ACE2 to the coiled-coil domain of the cartilage oligomeric matrix protein. The resulting ACE-MAP is able to bind to the SARS-CoV-2 RBD with improved binding affinity, is expressible in , and is thermally stable and relatively small (62 kDa). These properties suggest ACE-MAP and the MAP scaffold to be a promising route towards developing future diagnostics and therapeutics to SARS-CoV-2.
Effects of Sequence Features on Machine-Learned Enzyme Classification Fidelity
Ferdous S, Shihab IF and Reuel NF
Assigning enzyme commission (EC) numbers using sequence information alone has been the subject of recent classification algorithms where statistics, homology and machine-learning based methods are used. This work benchmarks performance of a few of these algorithms as a function of sequence features such as chain length and amino acid composition (AAC). This enables determination of optimal classification windows for sequence generation and enzyme design. In this work we developed a parallelization workflow which efficiently processes >500,000 annotated sequences through each candidate algorithm and a visualization workflow to observe the performance of the classifier over changing enzyme length, main EC class and AAC. We applied these workflows to the entire SwissProt database to date (n = 565245) using two, locally installable classifiers, ECpred and DeepEC, and collecting results from two other webserver-based tools, Deepre and BENZ-ws. It is observed that all the classifiers exhibit peak performance in the range of 300 to 500 amino acids in length. In terms of main EC class, classifiers were most accurate at predicting translocases (EC-6) and were least accurate in determining hydrolases (EC-3) and oxidoreductases (EC-1). We also identified AAC ranges that are most common in the annotated enzymes and found that all classifiers work best in this common range. Among the four classifiers, ECpred showed the best consistency in changing feature space. These workflows can be used to benchmark new algorithms as they are developed and find optimum design spaces for the generation of new, synthetic enzymes.
From a recombinant key antigen to an accurate, affordable serological test: Lessons learnt from COVID-19 for future pandemics
Alvim RGF, Lima TM, Rodrigues DAS, Marsili FF, Bozza VBT, Higa LM, Monteiro FL, Abreu DPB, Leitão IC, Carvalho RS, Galliez RM, Castineiras TMPP, Travassos LH, Nobrega A, Tanuri A, Ferreira OC, Vale AM and Castilho LR
Serological tests detect antibodies generated by infection or vaccination, and are indispensable tools along different phases of a pandemic, from early monitoring of pathogen spread up to seroepidemiological studies supporting immunization policies. This work discusses the development of an accurate and affordable COVID-19 antibody test, from production of a recombinant protein antigen up to test validation and economic analysis. We first developed a cost-effective, scalable technology to produce SARS-COV-2 spike protein and then used this antigen to develop an enzyme-linked immunosorbent assay (ELISA). A receiver operator characteristic (ROC) analysis allowed optimizing the cut-off and confirmed the high accuracy of the test: 98.6% specificity and 95% sensitivity for 11+ days after symptoms onset. We further showed that dried blood spots collected by finger pricking on simple test strips could replace conventional plasma/serum samples. A cost estimate was performed and revealed a final retail price in the range of one US dollar, reflecting the low cost of the ELISA test platform and the elimination of the need for venous blood sampling and refrigerated sample handling in clinical laboratories. The presented workflow can be completed in 4 months from first antigen expression to final test validation. It can be applied to other pathogens and in future pandemics, facilitating reliable and affordable seroepidemiological surveillance also in remote areas and in low-income countries.
Integrated autolysis, DNA hydrolysis and precipitation enables an improved bioprocess for Q-Griffithsin, a broad-spectrum antiviral and clinical-stage anti-COVID-19 candidate
Decker JS, Menacho-Melgar R and Lynch MD
Across the biomanufacturing industry, innovations are needed to improve efficiency and flexibility, especially in the face of challenges such as the COVID-19 pandemic. Here we report an improved bioprocess for Q-Griffithsin, a broad-spectrum antiviral currently in clinical trials for COVID-19. Q-Griffithsin is produced at high titer in and purified to anticipated clinical grade without conventional chromatography or the need for any fixed downstream equipment. The process is thus both low-cost and highly flexible, facilitating low sales prices and agile modifications of production capacity, two key features for pandemic response. The simplicity of this process is enabled by a novel unit operation that integrates cellular autolysis, autohydrolysis of nucleic acids, and contaminant precipitation, giving essentially complete removal of host cell DNA as well as reducing host cell proteins and endotoxin by 3.6 and 2.4 log units, respectively. This unit operation can be performed rapidly and in the fermentation vessel, such that Q-GRFT is obtained with 100% yield and > 99.9% purity immediately after fermentation and requires only a flow-through membrane chromatography step for further contaminant removal. Using this operation or variations of it may enable improved bioprocesses for a range of other high-value proteins in .
Engineering of a protein probe with multiple inputs and multiple outputs for evaluation of alpha synuclein aggregation states
Chau E and Kim JR
The aggregation of α-synuclein (αS) into oligomers and fibrils is implicated in the pathology of Parkinson's Disease (PD). While a molecular probe for rapid and comprehensive evaluation of αS aggregation states is critical for a better understanding of PD pathology, identification of therapeutic candidates, and the development of early diagnostic strategies, no such probe has yet to be developed. A structurally flexible αS variant, PG65, was previously developed as a target binding-driven, conformation-switching molecular probe for rapid αS oligomer detection. Though informative, detection using PG65 provides no comprehensive assessment of the αS aggregation states. In the present study, we report engineering of a molecular probe, PG65-MIMO (a PG65 variant with Multiple-Inputs and Multiple-Outputs), that rapidly (within 2 hr) produces comprehensive information on αS aggregation states. PG65-MIMO generates distinct fluorescence responses to the three major αS conformers (monomers, oligomers, and fibrils). PG65-MIMO also displays unique fluorescent signals for αS oligomers, depending on the tris(2-carboxyethyl)phosphine (TCEP) concentration. Our results suggest that the TCEP dependent signaling of PG65-MIMO may be associated with its conformational states. Overall, our study illustrates engineering of an αS variant to create a molecular probe for handling multiple inputs and multiple outputs, addressing the technological gap in αS detection.
Theoretical and Experimental Investigation of Alginate Microtube Extrusion for Cell Culture Applications
Nusterer M, Rauch J and Viljoen H
A novel cell culture technology, consisting of hollow alginate tubes, OD ~550 , ID ~450 containing a cell suspension, provides stress-free conditions. Cells reach confluency in approximately ten days with cell densities of 0.5 - 1 billion cells per . Tubes are manufactured in a tri-axial needle extruder with three concentric flows. The cell suspension flows in the inner needle (N1), the alginate solution flows in the annulus between N1 and the second needle (N2) and a solution is the sheath fluid between the second and third needle (N3). Beyond the tip of N2, the sheath solution is in contact with the alginate and diffuses into the alginate solution and crosslinks it to form an alginate microtube around the core fluid. The cross-linked layer moves radially inwards like a front, starting at the sheath/annulus interface and ends at the annulus/core interface. A mathematical model is used to find the minimum length of direct contact between the solution and the alginate solution to complete the cross-linking. Experimental results support the theoretical findings that stable tubes can only be manufactured if the contact length exceeds . Experiments also show that the extruder configuration N3>N2 is best for alginate tube manufacture.
COVID-19 challenges: From SARS-CoV-2 infection to effective point-of-care diagnosis by electrochemical biosensing platforms
Campos-Ferreira D, Visani V, Córdula C, Nascimento GA, Montenegro LML, Schindler HC and Cavalcanti IMF
In January 2020, the World Health Organization (WHO) identified a new zoonotic virus, SARS-CoV-2, responsible for causing the COVID-19 (coronavirus disease 2019). Since then, there has been a collaborative trend between the scientific community and industry. Multidisciplinary research networks try to understand the whole SARS-CoV-2 pathophysiology and its relationship with the different grades of severity presented by COVID-19. The scientific community has gathered all the data in the quickly developed vaccines that offer a protective effect for all variants of the virus and promote new diagnostic alternatives able to have a high standard of efficiency, added to shorter response analysis time and portability. The industry enters in the context of accelerating the path taken by science until obtaining the final product. In this review, we show the principal diagnostic methods developed during the COVID-19 pandemic. However, when we observe the diagnostic tools section of an efficient infection outbreak containment report and the features required for such tools, we could observe a highlight of electrochemical biosensing platforms. Such devices present a high standard of analytical performance, are low-cost tools, easy to handle and interpret, and can be used in the most remote and low-resource regions. Therefore, probably, they are the ideal point-of-care diagnostic tools for pandemic scenarios.
Agitation in a Microcarrier-based Spinner Flask Bioreactor Modulates Homeostasis of Human Mesenchymal Stem Cells
Jeske R, Lewis S, Tsai AC, Sanders K, Liu C, Yuan X and Li Y
Human mesenchymal stem cells (hMSCs) are well known in cell therapy due to their secretion of trophic factors, multipotent differentiation potential, and ability for self-renewal. As a result, the number of clinical trials has been steadily increasing over the last decade highlighting the need for in vitro systems capable of producing large quantities of cells to meet growing demands. However, hMSCs are highly sensitive to microenvironment conditions, including shear stress caused by dynamic bioreactor systems, and can lead to alteration of cellular homeostasis. In this study, hMSCs were expanded on microcarriers within a 125 mL spinner flask bioreactor system. Our results demonstrate a three-fold expansion over seven days. Furthermore, our results show that culturing hMSCs in the microcarrier-based suspension bioreactor (compared to static planar culture) results in smaller cell size and higher levels of reactive oxidative species (ROS) and ROS regulator Sirtuin-3, which have implications on the nicotinamide adenine dinucleotide metabolic pathway and metabolic homeostasis. In addition, hMSCs in the bioreactor showed the increased Prostaglandin E secretion as well as reduced the Indoleamine-pyrrole 2,3-dioxygenase secretion upon stimulus with interferon gamma. The results of this study provide understanding of potential hMSC physiology alterations impacted by bioreactor microenvironment during scalable production of hMSCs for biomanufacturing and clinical trials.
Characterization of PMI-5011 on the Regulation of Deubiquitinating Enzyme Activity in Multiple Myeloma Cell Extracts
Vaithiyanathan M, Yu Y, Rahnama A, Pettigrew JH, Safa N, Liu D, Gauthier TJ, Floyd ZE and Melvin AT
Deubiquitinating enzyme (DUB)-targeted therapeutics have shown promise in recent years as alternative cancer therapeutics, especially when coupled with proteasome-based inhibitors. While a majority of DUB-based therapeutics function by inhibiting DUB enzymes, studies show that positive regulation of these enzymes can stabilize levels of protein degradation. Unfortunately, there are currently no clinically available therapeutics for this purpose. The goal of this work was to understand the effect of a botanical extract from called PMI-5011 on DUB activity in cancer cells. Through a series of kinetic analyses and mathematical modeling, it was found that PMI-5011 positively regulated DUB activity in two model multiple myeloma cells line (OPM2 and MM.1S). This suggests that PMI-5011 interacts with the active domains of DUBs to enhance their activity directly or indirectly, without apparently affecting cellular viability. Similar kinetic profiles of DUB activity were observed with three bioactive compounds in PMI-5011 (DMC-1, DMC-2, davidigenin). Interestingly, a differential cell line-independent trend was observed at higher concentrations which suggested variances in inherent gene expressions of UCHL1, UCHL5, USP7, USP15, USP14, and Rpn11 in OPM2 and MM.1S cell lines. These findings highlight the therapeutic potential of PMI-5011 and its selected bioactive compounds in cancer.
Development of a robust -based cell-free protein synthesis application platform
Jiang N, Ding X and Lu Y
Since the cell-free protein synthesis system is not limited by the cell growth, all the substrates are used to produce the protein of interest, and the reaction environment can be flexibly controlled. All the advantages allow it to synthesize toxic proteins, membrane proteins, and unnatural proteins that are difficult to make . However, one typical reason why the cell-free system has not been widely accepted as a practical alternative, is its expression efficiency problem. The -based system was chosen in this study, and the model protein deGFP was expressed to explore a more efficient cell-free system. The results showed that Mg with a concentration of 15 mM in the cell-free system with BL21 Star (DE3) as the extract could better synthesize protein. The smaller the vectors, the lighter the burden, the higher the protein synthesis. Simulating the crowding effect in the cell does not improve the protein expression efficiency of the optimized cell-free protein synthesis system. Based on the optimized system, the cell-free fundamental research platform, primary screening platform, and portable biomolecular synthesis platform were established. This study provides a robust cell-free protein synthesis toolbox with easy extract preparation and high protein yield. It also enables more researchers to reap the benefits from the cell-free biosynthesis platform.
Production of influenza virus-like particles using recombinant insect cells
Matsuda T, Tanijima T, Hirose A, Masumi-Koizumi K, Katsuda T and Yamaji H
Virus-like particles (VLPs) are hollow nanoparticles composed of recombinant viral surface proteins without a virus genome. In the present study, we investigated the production of influenza VLPs using recombinant insect cells. DNA fragments encoding influenza A virus hemagglutinin (HA) and matrix protein 1 (M1) were cloned with the BiP signal sequence in plasmid vectors containing a blasticidin and a neomycin resistance gene, respectively. After BTI-TN-5B1-4 (High Five) cells were co-transfected with a pair of constructed plasmid vectors, stably transformed cells were established via incubation with blasticidin and G418. Western blot analyses showed that recombinant High Five cells secreted HA and M1 proteins into the culture supernatant. Immunoprecipitation of the culture supernatant with an anti-HA antibody and transmission electron microscopy suggested that secreted HA and M1 proteins were in a particulate structure with a morphology similar to that of an influenza virus. Hemagglutination assay indicated that expressed HA molecules retained hemagglutination activity. In a shake-flask culture, recombinant cells achieved a high HA yield (≈ 10 μg/ml) comparable to the yields obtained using the baculovirus-insect cell system. Recombinant insect cells may serve as excellent platforms for the efficient production of influenza VLPs for use as safe and effective vaccines and diagnostic antigens.
Direct measurement of deubiquitinating enzyme activity in intact cells using a protease-resistant, cell-permeable, peptide-based reporter
Safa N, Pettigrew JH, Gauthier TJ and Melvin AT
Deubiquitinating enzymes (DUBs) regulate the removal of the polyubiquitin chain from proteins targeted for degradation. Current approaches to quantify DUB activity are limited to test tube-based assays that incorporate enzymes or cell lysates, but not intact cells. The goal of this work was to develop a novel peptide-based biosensor of DUB activity that is cell permeable, protease-resilient, fluorescent, and specific to DUBs. The biosensor consists of an N-terminal β-hairpin motif that acts as both a 'protectide' to increase intracellular stability and a cell penetrating peptide (CPP) to facilitate the uptake into intact cells. The β-hairpin was conjugated to a C-terminal substrate consisting of the last four amino acids in ubiquitin (LRGG) to facilitate DUB mediated cleavage of a C-terminal fluorophore (AFC). The kinetics of the peptide reporter were characterized in cell lysates by dose response and inhibition enzymology studies. Inhibition studies with an established DUB inhibitor (PR-619) confirmed the specificity of both reporters to DUBs. Fluorometry and fluorescent microscopy experiments followed by mathematical modeling established the capability of the biosensor to measure DUB activity in intact cells while maintaining cellular integrity. The novel reporter introduced here is compatible with high-throughput single cell analysis platforms such as FACS and droplet microfluidics facilitating direct quantification of DUB activity in single intact cells with direct application in point-of-care cancer diagnostics and drug discovery.
Metabolic modeling of bacterial co-culture systems predicts enhanced carbon monoxide-to-butyrate conversion compared to monoculture systems
Li X and Henson MA
We used metabolic modeling to computationally investigate the potential of bacterial coculture system designs for CO conversion to the platform chemical butyrate. By taking advantage of the native capabilities of wild-type strains, we developed two anaerobic coculture designs by combining for CO-to-acetate conversion with bacterial strains that offer high acetate-to-butyrate conversion capabilities: the environmental bacterium the human gut bacterium. When grown in continuous stirred tank reactor on a 70/0/30 CO/H/N gas mixture, the C. autoethanogenum- co-culture was predicted to offer no mprovement in butyrate volumetric productivity compared to an engineered monoculture despite utilizing vinyl acetate as a secondary carbon source for growth enhancement. A coculture consisting of and engineered in silico to eliminate hexanoate synthesis was predicted to enhance both butyrate productivity and titer. The coculture offered similar improvements in butyrate productivity without the need for metabolic engineering when glucose was provided as a secondary carbon source to enhance growth. A bubble column model developed to assess the potential for large-scale butyrate production of the design predicted that a 40/30/30 CO/H/N gas mixture and a 5 m column length would be preferred to enhance growth and counteract CO inhibitory effects on
Effect of Monocyte Seeding Density on Dendritic Cell Generation in an Automated Perfusion-Based Culture System
Kozbial A, Bhandary L and Murthy SK
Dendritic cells (DCs) are increasingly important for research and clinical use but obtaining sufficient numbers of dendritic cells is a growing challenge. We systemically investigated the effect of monocyte (MO) seeding density on the generation of monocyte-derived immature DCs (iDCs) in MicroDEN, a perfusion-based culture system, as well as 6-well plates. Cell surface markers and the ability of the iDCs to induce proliferation of allogeneic T cells were examined. The data shows a strong relationship between iDC phenotype, specifically CD80/83/86 expression, and T cell proliferation. MicroDEN generated iDCs proved better than well plate generated iDCs at inducing T cell proliferation within the 200k-600k MO/cm seeding density range studied. We attribute this to perfusion in MicroDEN which supplies fresh differentiation medium continuously to the differentiating MOs while concurrently removing depleted medium and toxic byproducts of cellular respiration. MicroDEN generated fewer iDCs on a normalized basis than the well plates at lower MO seeding densities but generated equivalent numbers of iDCs at 600k MO seeding density. These results demonstrate that MicroDEN is capable of generating greater numbers of iDCs with less manual work than standard well plate culture and the MicroDEN generated iDCs have greater ability to induce T cell proliferation.
Towards the optimisation of ceramic-based microbial fuel cells: A three-factor three-level response surface analysis design
Salar-García MJ, de Ramón-Fernández A, Ortiz-Martínez VM, Ruiz-Fernández D and Ieropoulos I
Microbial fuel cells (MFCs) are an environment-friendly technology, which addresses two of the most important environmental issues worldwide: fossil fuel depletion and water scarcity. Modelling is a useful tool that allows us to understand the behaviour of MFCs and predict their performance, yet the number of MFC models that could accurately inform a scale-up process, is low. In this work, a three-factor three-level Box-Behnken design is used to evaluate the influence of different operating parameters on the performance of air-breathing ceramic-based MFCs fed with human urine. The statistical analysis of the 45 tests run shows that both anode area and external resistance have more influence on the power output than membrane thickness, in the range studied. The theoretical optimal conditions were found at a membrane thickness of 1.55 mm, an external resistance of 895.59 Ω and an anode area of 165.72 cm, corresponding to a maximum absolute power generation of 467.63 μW. The accuracy of the second order model obtained is 88.6%. Thus, the three-factor three-level Box-Behnken-based model designed is an effective tool which provides key information for the optimisation of the energy harvesting from MFC technology and saves time in terms of experimental work.
Loading and Releasing Ciprofloxacin in Photoactivatable Liposomes
Ghosh S, Qi R, Carter KA, Zhang G, Pfeifer BA and Lovell JF
We demonstrate that ciprofloxacin can be actively loaded into liposomes that contain small amounts of porphyrin-phospholipid (PoP). PoP renders the liposomes photoactivatable, so that the antibiotic is released from the carrier under red light irradiation (665 nm). The use of 2 molar % PoP in the liposomes accommodated active loading of ciprofloxacin. Further inclusion of 2 molar % of an unsaturated phospholipid accelerated light-triggered drug release, with more than 90 % antibiotic release from the liposomes occurring in less than 30 seconds. With or without laser treatment, ciprofloxacin PoP liposomes inhibited the growth of in liquid media, apparently due to uptake of the liposomes by the bacteria. However, when liposomes were first separated from smaller molecules with centrifugal filtration, only the filtrate from laser-treated liposomes was bactericidal, confirming effective release of active antibiotic. These results establish the feasibility of remote loading antibiotics into photoactivatable liposomes, which could lead to opportunities for enhanced localized antibiotic therapy.