From Radical Coupling to Enantioselective Controlled Protonation: Advancing Precise Construction of Stereocenters
Recent advancements in green and sustainable platforms, particularly visible light-driven photocatalysis, have spurred significant progress in radical chemistry, enabling the efficient synthesis of important molecules from simple and readily available feedstocks under mild conditions. However, the rapid orbital flipping and high reactivity of radicals pose substantial challenges for achieving precise enantiocontrol in stereocenter formation via radical coupling. In this study, we present a generic and efficient strategy that modulates this elusive approach, facilitating enantiocontrollable protonation through 1,3-boron migration. We successfully developed two previously elusive photocatalytic asymmetric transformations: the de Mayo reaction utilizing energy transfer and three-component reactions of cyanoazaarenes initiated by single-electron transfer. Moreover, the incorporation of cost-effective DO as a deuterium source enhances the synthetic and pharmaceutical significance of this method, offering a valuable tool for future applications.
TNF-α Regulated Bidirectional Interaction Between Bone Marrow Mesenchymal Stem Cells and Articular Chondrocytes
Articular chondrocytes (ACs) secrete a variety of extracellular matrix components to maintain the functions of articular cartilage. Degeneration of ACs leads to the degeneration of articular cartilage and consequently to osteoarthritis. The secretion of bone marrow mesenchymal stem cells (BMSCs) is capable of protecting ACs from degeneration, and thus BMSCs are widely applied to treat osteoarthritis.
Revolutionizing Personalized Medicine: Synergy with Multi-Omics Data Generation, Main Hurdles, and Future Perspectives
The field of personalized medicine is undergoing a transformative shift through the integration of multi-omics data, which mainly encompasses genomics, transcriptomics, proteomics, and metabolomics. This synergy allows for a comprehensive understanding of individual health by analyzing genetic, molecular, and biochemical profiles. The generation and integration of multi-omics data enable more precise and tailored therapeutic strategies, improving the efficacy of treatments and reducing adverse effects. However, several challenges hinder the full realization of personalized medicine. Key hurdles include the complexity of data integration across different omics layers, the need for advanced computational tools, and the high cost of comprehensive data generation. Additionally, issues related to data privacy, standardization, and the need for robust validation in diverse populations remain significant obstacles. Looking ahead, the future of personalized medicine promises advancements in technology and methodologies that will address these challenges. Emerging innovations in data analytics, machine learning, and high-throughput sequencing are expected to enhance the integration of multi-omics data, making personalized medicine more accessible and effective. Collaborative efforts among researchers, clinicians, and industry stakeholders are crucial to overcoming these hurdles and fully harnessing the potential of multi-omics for individualized healthcare.
Asymmetric photoredox catalytic formal de Mayo reaction enabled by sensitization-initiated electron transfer
Visible-light-driven photoredox catalysis is known to be a powerful tool for organic synthesis. Its occurrence critically depends on the twice exothermic single-electron transfer processes of photosensitizers, which are governed by the redox properties of the species involved. Hence, the inherently narrow range of redox potentials of photosensitizers inevitably constrains their further availability. Sensitization-initiated electron transfer has recently been found to effectively overcome this substantial challenge. However, feasible and practical strategies for designing such complicated catalytic systems are rather scarce. Herein we report an elaborate dual-catalyst platform, with dicyanopyrazine as a visible light photosensitizer and a pyrenyl-incorporated chiral phosphoric acid as a co-sensitizer, and we demonstrate the applicability of this sensitization-initiated electron transfer strategy in an asymmetric formal de Mayo-type reaction. The catalysis platform enables otherwise thermodynamically unfavourable electron transfer processes to close the redox cycle and allows for precise access to valuable enantioenriched 1,5-diketones with a wide substrate range.
Catalytic asymmetric [4 + 2] dearomative photocycloadditions of anthracene and its derivatives with alkenylazaarenes
Photocatalysis through energy transfer has been investigated for the facilitation of [4 + 2] cycloaddition reactions. However, the high reactivity of radical species poses a challenging obstacle to achieving enantiocontrol with chiral catalysts, as no enantioselective examples have been reported thus far. Here, we present the development of catalytic asymmetric [4 + 2] dearomative photocycloaddition involving anthracene and its derivatives with alkenylazaarenes. This accomplishment is achieved by utilizing a cooperative photosensitizer and chiral Brønsted acid catalysis platform. Importantly, this process enables the activation of anthracene substrates through energy transfer from triplet DPZ, thereby initiating a precise and stereoselective sequential transformation. The significance of our work is highlighted by the synthesis of a diverse range of pharmaceutical valuable cycloadducts incorporating attractive azaarenes, all obtained with high yields, ees, and drs. The broad substrate scope is further underscored by successful construction of all-carbon quaternary stereocenters and diverse adjacent stereocenters.