CAUSAL HEALTH IMPACTS OF POWER PLANT EMISSION CONTROLS UNDER MODELED AND UNCERTAIN PHYSICAL PROCESS INTERFERENCE
Causal inference with spatial environmental data is often challenging due to the presence of interference: outcomes for observational units depend on some combination of local and nonlocal treatment. This is especially relevant when estimating the effect of power plant emissions controls on population health, as pollution exposure is dictated by: (i) the location of point-source emissions as well as (ii) the transport of pollutants across space via dynamic physical-chemical processes. In this work we estimate the effectiveness of air quality interventions at coal-fired power plants in reducing two adverse health outcomes in Texas in 2016: pediatric asthma ED visits and Medicare all-cause mortality. We develop methods for causal inference with interference when the underlying network structure is not known with certainty and instead must be estimated from ancillary data. Notably, uncertainty in the interference structure is propagated to the resulting causal effect estimates. We offer a Bayesian, spatial mechanistic model for the interference mapping, which we combine with a flexible nonparametric outcome model to marginalize estimates of causal effects over uncertainty in the structure of interference. our analysis finds some evidence that emissions controls at upwind power plants reduce asthma ED visits and all-cause mortality; however, accounting for uncertainty in the interference renders the results largely inconclusive.
JOINT MODELING OF MULTISTATE AND NONPARAMETRIC MULTIVARIATE LONGITUDINAL DATA
It is oftentimes the case in studies of disease progression that subjects can move into one of several disease states of interest. Multistate models are an indispensable tool to analyze data from such studies. The Environmental Determinants of Diabetes in the Young (TEDDY) is an observational study of at-risk children from birth to onset of type-1 diabetes (T1D) up through the age of 15. A joint model for simultaneous inference of multistate and multivariate nonparametric longitudinal data is proposed to analyze data and answer the research questions brought up in the study. The proposed method allows us to make statistical inferences, test hypotheses, and make predictions about future state occupation in the TEDDY study. The performance of the proposed method is evaluated by simulation studies. The proposed method is applied to the motivating example to demonstrate the capabilities of the method.
BIVARIATE FUNCTIONAL PATTERNS OF LIFETIME MEDICARE COSTS AMONG ESRD PATIENTS
In this work we study the lifetime Medicare spending patterns of patients with end-stage renal disease (ESRD). We extract the information of patients who started their ESRD services in 2007-2011 from the United States Renal Data System (USRDS). Patients are partitioned into three groups based on their kidney transplant status: 1-unwaitlisted and never transplanted, 2-waitlisted but never transplanted, and 3-waitlisted and then transplanted. To study their Medicare cost trajectories, we use a semiparametric regression model with both fixed and bivariate time-varying coefficients to compare groups 1 and 2, and a bivariate time-varying coefficient model with different starting times (time since the first ESRD service and time since the kidney transplant) to compare groups 2 and 3. In addition to demographics and other medical conditions, these regression models are conditional on the survival time, which ideally depict the lifetime Medicare spending patterns. For estimation, we extend the profile weighted least squares (PWLS) estimator to longitudinal data for the first comparison and propose a two-stage estimating method for the second comparison. We use sandwich variance estimators to construct confidence intervals and validate inference procedures through simulations. Our analysis of the Medicare claims data reveals that waitlisting is associated with a lower daily medical cost at the beginning of ESRD service among waitlisted patients which gradually increases over time. Averaging over lifespan, however, there is no difference between waitlisted and unwaitlisted groups. A kidney transplant, on the other hand, reduces the medical cost significantly after an initial spike.
A NONPARAMETRIC MIXED-EFFECTS MIXTURE MODEL FOR PATTERNS OF CLINICAL MEASUREMENTS ASSOCIATED WITH COVID-19
Some patients with COVID-19 show changes in signs and symptoms such as temperature and oxygen saturation days before being positively tested for SARS-CoV-2, while others remain asymptomatic. It is important to identify these subgroups and to understand what biological and clinical predictors are related to these subgroups. This information will provide insights into how the immune system may respond differently to infection and can further be used to identify infected individuals. We propose a flexible nonparametric mixed-effects mixture model that identifies risk factors and classifies patients with biological changes. We model the latent probability of biological changes using a logistic regression model and trajectories in the latent groups using smoothing splines. We developed an EM algorithm to maximize the penalized likelihood for estimating all parameters and mean functions. We evaluate our methods by simulations and apply the proposed model to investigate changes in temperature in a cohort of COVID-19-infected hemodialysis patients.
A bootstrap model comparison test for identifying genes with context-specific patterns of genetic regulation
Understanding how genetic variation affects gene expression is essential for a complete picture of the functional pathways that give rise to complex traits. Although numerous studies have established that many genes are differentially expressed in distinct human tissues and cell types, no tools exist for identifying the genes whose expression is differentially regulated. Here we introduce DRAB (differential regulation analysis by bootstrapping), a gene-based method for testing whether patterns of genetic regulation are significantly different between tissues or other biological contexts. DRAB first leverages the elastic net to learn context-specific models of local genetic regulation and then applies a novel bootstrap-based model comparison test to check their equivalency. Unlike previous model comparison tests, our proposed approach can determine whether population-level models have equal predictive performance by accounting for the variability of feature selection and model training. We validated DRAB on mRNA expression data from a variety of human tissues in the Genotype-Tissue Expression (GTEx) Project. DRAB yielded biologically reasonable results and had sufficient power to detect genes with tissue-specific regulatory profiles while effectively controlling false positives. By providing a framework that facilitates the prioritization of differentially regulated genes, our study enables future discoveries on the genetic architecture of molecular phenotypes.
PATIENT RECRUITMENT USING ELECTRONIC HEALTH RECORDS UNDER SELECTION BIAS: A TWO-PHASE SAMPLING FRAMEWORK
Electronic health records (EHRs) are increasingly recognized as a cost-effective resource for patient recruitment in clinical research. However, how to optimally select a cohort from millions of individuals to answer a scientific question of interest remains unclear. Consider a study to estimate the mean or mean difference of an expensive outcome. Inexpensive auxiliary covariates predictive of the outcome may often be available in patients' health records, presenting an opportunity to recruit patients selectively, which may improve efficiency in downstream analyses. In this paper we propose a two-phase sampling design that leverages available information on auxiliary covariates in EHR data. A key challenge in using EHR data for multiphase sampling is the potential selection bias, because EHR data are not necessarily representative of the target population. Extending existing literature on two-phase sampling design, we derive an optimal two-phase sampling method that improves efficiency over random sampling while accounting for the potential selection bias in EHR data. We demonstrate the efficiency gain from our sampling design via simulation studies and an application evaluating the prevalence of hypertension among U.S. adults leveraging data from the Michigan Genomics Initiative, a longitudinal biorepository in Michigan Medicine.
EXPOSURE EFFECTS ON COUNT OUTCOMES WITH OBSERVATIONAL DATA, WITH APPLICATION TO INCARCERATED WOMEN
Causal inference methods can be applied to estimate the effect of a point exposure or treatment on an outcome of interest using data from observational studies. For example, in the Women's Interagency HIV Study, it is of interest to understand the effects of incarceration on the number of sexual partners and the number of cigarettes smoked after incarceration. In settings like this where the outcome is a count, the estimand is often the causal mean ratio, i.e., the ratio of the counterfactual mean count under exposure to the counterfactual mean count under no exposure. This paper considers estimators of the causal mean ratio based on inverse probability of treatment weights, the parametric g-formula, and doubly robust estimation, each of which can account for overdispersion, zero-inflation, and heaping in the measured outcome. Methods are compared in simulations and are applied to data from the Women's Interagency HIV Study.
AN INTEGRATIVE NETWORK-BASED MEDIATION MODEL (NMM) TO ESTIMATE MULTIPLE GENETIC EFFECTS ON OUTCOMES MEDIATED BY FUNCTIONAL CONNECTIVITY
Functional connectivity of the brain, characterized by interconnected neural circuits across functional networks, is a cutting-edge feature in neuroimaging. It has the potential to mediate the effect of genetic variants on behavioral outcomes or diseases. Existing mediation analysis methods can evaluate the impact of genetics and brain structurefunction on cognitive behavior or disorders, but they tend to be limited to single genetic variants or univariate mediators, without considering cumulative genetic effects and the complex matrix and group and network structures of functional connectivity. To address this gap, the paper presents an integrative network-based mediation model (NMM) that estimates the effect of multiple genetic variants on behavioral outcomes or diseases mediated by functional connectivity. The model incorporates group information of inter-regions at broad network level and imposes low-rank and sparse assumptions to reflect the complex structures of functional connectivity and selecting network mediators simultaneously. We adopt block coordinate descent algorithm to implement a fast and efficient solution to our model. Simulation results indicate the efficacy of the model in selecting active mediators and reducing bias in effect estimation. With application to the Human Connectome Project Youth Adult (HCP-YA) study of 493 young adults, two genetic variants (rs769448 and rs769449) on the gene are identified that lead to deficits in functional connectivity within visual networks and fluid intelligence.
MASH: MEDIATION ANALYSIS OF SURVIVAL OUTCOME AND HIGH-DIMENSIONAL OMICS MEDIATORS WITH APPLICATION TO COMPLEX DISEASES
Environmental exposures such as cigarette smoking influence health outcomes through intermediate molecular phenotypes, such as the methylome, transcriptome, and metabolome. Mediation analysis is a useful tool for investigating the role of potentially high-dimensional intermediate phenotypes in the relationship between environmental exposures and health outcomes. However, little work has been done on mediation analysis when the mediators are high-dimensional and the outcome is a survival endpoint, and none of it has provided a robust measure of total mediation effect. To this end, we propose an estimation procedure for Mediation Analysis of Survival outcome and High-dimensional omics mediators (MASH) based on sure independence screening for putative mediator variable selection and a second-moment-based measure of total mediation effect for survival data analogous to the measure in a linear model. Extensive simulations showed good performance of MASH in estimating the total mediation effect and identifying true mediators. By applying MASH to the metabolomics data of 1919 subjects in the Framingham Heart Study, we identified five metabolites as mediators of the effect of cigarette smoking on coronary heart disease risk (total mediation effect, 51.1%) and two metabolites as mediators between smoking and risk of cancer (total mediation effect, 50.7%). Application of MASH to a diffuse large B-cell lymphoma genomics data set identified copy-number variations for eight genes as mediators between the baseline International Prognostic Index score and overall survival.
SEMIPARAMETRIC BIVARIATE HIERARCHICAL STATE SPACE MODEL WITH APPLICATION TO HORMONE CIRCADIAN RELATIONSHIP
The adrenocorticotropic hormone and cortisol play critical roles in stress regulation and the sleep-wake cycle. Most research has been focused on how the two hormones regulate each other in terms of short-term pulses. Few studies have been conducted on the circadian relationship between the two hormones and how it differs between normal and abnormal groups. The circadian patterns are difficult to model as parametric functions. Directly extending univariate functional mixed effects models would result in a large dimensional problem and a challenging nonparametric inference. In this article, we propose a semi-parametric bivariate hierarchical state space model, in which each hormone profile is modeled by a hierarchical state space model, with nonparametric population-average and subject-specific components. The bivariate relationship is constructed by concatenating two latent independent subject-specific random functions specified by a design matrix, leading to a parametric inference on the correlation. We propose a computationally efficient state-space EM algorithm for estimation and inference. We apply the proposed method to a study of chronic fatigue syndrome and fibromyalgia and discover an erratic regulation pattern in the patient group in contrast to a circadian regulation pattern conforming to the day-night cycle in the control group.
BAYESIAN NESTED LATENT CLASS MODELS FOR CAUSE-OF-DEATH ASSIGNMENT USING VERBAL AUTOPSIES ACROSS MULTIPLE DOMAINS
Understanding cause-specific mortality rates is crucial for monitoring population health and designing public health interventions. Worldwide, two-thirds of deaths do not have a cause assigned. Verbal autopsy (VA) is a well-established tool to collect information describing deaths outside of hospitals by conducting surveys to caregivers of a deceased person. It is routinely implemented in many low- and middle-income countries. Statistical algorithms to assign cause of death using VAs are typically vulnerable to the distribution shift between the data used to train the model and the target population. This presents a major challenge for analyzing VAs, as labeled data are usually unavailable in the target population. This article proposes a latent class model framework for VA data (LCVA) that jointly models VAs collected over multiple heterogeneous domains, assigns causes of death for out-of-domain observations and estimates cause-specific mortality fractions for a new domain. We introduce a parsimonious representation of the joint distribution of the collected symptoms using nested latent class models and develop a computationally efficient algorithm for posterior inference. We demonstrate that LCVA outperforms existing methods in predictive performance and scalability. Supplementary Material and reproducible analysis codes are available online. The R package LCVA implementing the method is available on GitHub (https://github.com/richardli/LCVA).
ASSESSING SCREENING EFFICACY IN THE PRESENCE OF CANCER OVERDIAGNOSIS
Cancer screening facilitates the early detection of cancer, at a stage when treatment is often most effective. However, it also brings the risk of over-diagnosis, where a diagnosis made through screening would not have led to symptoms or death during the patient's lifetime. In this paper, we tackle a significant unresolved issue in the evaluation of screening efficacy: selecting primary endpoints and inferential procedures that efficiently consider potential overdiagnosis in screening trials. This is motivated by the necessity to design and analyze a phase IV Early Detection Initiative (EDI) trial for evaluating a pancreatic cancer screening strategy. We introduce two novel approaches for assessing screening efficacy, grounded on cancer stage-shift. These methods address potential overdiagnosis by: i) borrowing information about clinical diagnosis from the control arm that hasn't undergone screening (the BR approach), and ii) performing sensitivity analysis, contingent upon a conservative bound of the overdiagnosis magnitude (the SEN-T approach). Analytical methods and extensive simulation studies underscore the superiority of our proposed methods, demonstrating enhanced efficiency in estimating and testing screening efficacy compared to existing methods. The latter either overlook overdiagnosis or adhere to a valid, yet conservative, cumulative incidence endpoint. We illustrate the practical application of these approaches using ovarian cancer data from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. The results affirm that our methods bolster an efficient and robust study design for cancer screening trials.
A BAYESIAN HIERARCHICAL SMALL AREA POPULATION MODEL ACCOUNTING FOR DATA SOURCE SPECIFIC METHODOLOGIES FROM AMERICAN COMMUNITY SURVEY, POPULATION ESTIMATES PROGRAM, AND DECENNIAL CENSUS DATA
Small area population counts are necessary for many epidemiological studies, yet their quality and accuracy are often not assessed. In the United States, small area population counts are published by the United States Census Bureau (USCB) in the form of the decennial census counts, intercensal population projections (PEP), and American Community Survey (ACS) estimates. Although there are significant relationships between these three data sources, there are important contrasts in data collection, data availability, and processing methodologies such that each set of reported population counts may be subject to different sources and magnitudes of error. Additionally, these data sources do not report identical small area population counts due to post-survey adjustments specific to each data source. Consequently, in public health studies, small area disease/mortality rates may differ depending on which data source is used for denominator data. To accurately estimate annual small area population counts associated uncertainties, we present a Bayesian population (BPop) model, which fuses information from all three USCB sources, accounting for data source specific methodologies and associated errors. We produce comprehensive small area race-stratified estimates of the true population, and associated uncertainties, given the observed trends in all three USCB population estimates. The main features of our framework are: (1) a single model integrating multiple data sources, (2) accounting for data source specific data generating mechanisms and specifically accounting for data source specific errors, and (3) prediction of population counts for years without USCB reported data. We focus our study on the Black and White only populations for 159 counties of Georgia and produce estimates for years 2006-2023. We compare BPop population estimates to decennial census counts, PEP annual counts, and ACS multi-year estimates. Additionally, we illustrate and explain the different types of data source specific errors. Lastly, we compare model performance using simulations and validation exercises. Our Bayesian population model can be extended to other applications at smaller spatial granularity and for demographic subpopulations defined further by race, age, and sex, and/or for other geographical regions.
TENSOR REGRESSION FOR INCOMPLETE OBSERVATIONS WITH APPLICATION TO LONGITUDINAL STUDIES
Multivariate longitudinal data are frequently encountered in practice such as in our motivating longitudinal microbiome study. It is of general interest to associate such high-dimensional, longitudinal measures with some univariate continuous outcome. However, incomplete observations are common in a regular study design, as not all samples are measured at every time point, giving rise to the so-called blockwise missing values. Such missing structure imposes significant challenges for association analysis and defies many existing methods that require complete samples. In this paper we propose to represent multivariate longitudinal data as a three-way tensor array (i.e., sample-by-feature-by-time) and exploit a parsimonious scalar-on-tensor regression model for association analysis. We develop a regularized covariance-based estimation procedure that effectively leverages all available observations without imputation. The method achieves variable selection and smooth estimation of time-varying effects. The application to the motivating microbiome study reveals interesting links between the preterm infant's gut microbiome dynamics and their neurodevelopment. Additional numerical studies on synthetic data and a longitudinal aging study further demonstrate the efficacy of the proposed method.
BAYESIAN PROJECTIONS OF TOTAL FERTILITY RATE CONDITIONAL ON THE UNITED NATIONS SUSTAINABLE DEVELOPMENT GOALS
Women's educational attainment and contraceptive prevalence are two mechanisms identified as having an accelerating effect on fertility decline and that can be directly impacted by policy. Quantifying the potential accelerating effect of education and family planning policies on fertility decline in a probabilistic way is of interest to policymakers, particularly in high-fertility countries. We propose a conditional Bayesian hierarchical model for projecting fertility given education and family planning policy interventions. To illustrate the effect policy changes could have on future fertility, we create probabilistic projections of fertility that condition on scenarios such as achieving the Sustainable Development Goals (SDGs) for universal secondary education and universal access to family planning by 2030.
COMPOSITE SCORES FOR TRANSPLANT CENTER EVALUATION: A NEW INDIVIDUALIZED EMPIRICAL NULL METHOD
Risk-adjusted quality measures are used to evaluate healthcare providers with respect to national norms while controlling for factors beyond their control. Existing healthcare provider profiling approaches typically assume that the between-provider variation in these measures is entirely due to meaningful differences in quality of care. However, in practice, much of the between-provider variation will be due to trivial fluctuations in healthcare quality, or unobservable confounding risk factors. If these additional sources of variation are not accounted for, conventional methods will disproportionately identify larger providers as outliers, even though their departures from the national norms may not be "extreme" or clinically meaningful. Motivated by efforts to evaluate the quality of care provided by transplant centers, we develop a composite evaluation score based on a novel individualized empirical null method, which robustly accounts for overdispersion due to unobserved risk factors, models the marginal variance of standardized scores as a function of the effective sample size, and only requires the use of publicly-available center-level statistics. The evaluations of United States kidney transplant centers based on the proposed composite score are substantially different from those based on conventional methods. Simulations show that the proposed empirical null approach more accurately classifies centers in terms of quality of care, compared to existing methods.
BUILDING A DOSE TOXO-EQUIVALENCE MODEL FROM A BAYESIAN META-ANALYSIS OF PUBLISHED CLINICAL TRIALS
In clinical practice medications are often interchanged in treatment protocols when a patient negatively reacts to their first line of therapy. Although switching between medications is common, clinicians often lack structured guidance when choosing the initial dose and frequency of a new medication, given the former with respect to risk of adverse events. In this paper we propose to establish this dose toxo-equivalence relationship using published clinical trial results with one or both drugs of interest via a Bayesian meta-analysis model that accounts for both within- and between-study variances. With the posterior parameter samples from this model, we compute median and 95% credible intervals for equivalent dose pairs of the two drugs that are predicted to produce equal rates of an adverse outcome, relying solely on study-level information. Via extensive simulations, we show that this approach approximates well the true dose toxo-equivalence relationship, considering different study designs, levels of between-study variance, and the inclusion/exclusion of nonconfounder/nonmodifier subject-level covariates in addition to study-level covariates. We compare the performance of this study-level meta-analysis estimate to the equivalent individual patient data meta-analysis model and find comparable bias and minimal efficiency loss in the study-level coefficients used in the dose toxo-equivalence relationship. Finally, we present the findings of our dose toxo-equivalence model applied to two chemotherapy drugs, based on data from 169 published clinical trials.
A RELUCTANT ADDITIVE MODEL FRAMEWORK FOR INTERPRETABLE NONLINEAR INDIVIDUALIZED TREATMENT RULES
Individualized treatment rules (ITRs) for treatment recommendation is an important topic for precision medicine as not all beneficial treatments work well for all individuals. Interpretability is a desirable property of ITRs, as it helps practitioners make sense of treatment decisions, yet there is a need for ITRs to be flexible to effectively model complex biomedical data for treatment decision making. Many ITR approaches either focus on linear ITRs, which may perform poorly when true optimal ITRs are nonlinear, or black-box nonlinear ITRs, which may be hard to interpret and can be overly complex. This dilemma indicates a tension between interpretability and accuracy of treatment decisions. Here we propose an additive model-based nonlinear ITR learning method that balances interpretability and flexibility of the ITR. Our approach aims to strike this balance by allowing both linear and nonlinear terms of the covariates in the final ITR. Our approach is parsimonious in that the nonlinear term is included in the final ITR only when it substantially improves the ITR performance. To prevent overfitting, we combine crossfitting and a specialized information criterion for model selection. Through extensive simulations we show that our methods are data-adaptive to the degree of nonlinearity and can favorably balance ITR interpretability and flexibility. We further demonstrate the robust performance of our methods with an application to a cancer drug sensitive study.
A BAYESIAN DECISION FRAMEWORK FOR OPTIMIZING SEQUENTIAL COMBINATION ANTIRETROVIRAL THERAPY IN PEOPLE WITH HIV
Numerous adverse effects (e.g., depression) have been reported for combination antiretroviral therapy (cART) despite its remarkable success in viral suppression in people with HIV (PWH). To improve long-term health outcomes for PWH, there is an urgent need to design personalized optimal cART with the lowest risk of comorbidity in the emerging field of precision medicine for HIV. Large-scale HIV studies offer researchers unprecedented opportunities to optimize personalized cART in a data-driven manner. However, the large number of possible drug combinations for cART makes the estimation of cART effects a high-dimensional combinatorial problem, imposing challenges in both statistical inference and decision-making. We develop a two-step Bayesian decision framework for optimizing sequential cART assignments. In the first step, we propose a dynamic model for individuals' longitudinal observations using a multivariate Gaussian process. In the second step, we build a probabilistic generative model for cART assignments and design an uncertainty-penalized policy optimization using the uncertainty quantification from the first step. Applying the proposed method to a dataset from the Women's Interagency HIV Study, we demonstrate its clinical utility in assisting physicians to make effective treatment decisions, serving the purpose of both viral suppression and comorbidity risk reduction.
BAYESIAN LEARNING OF COVID-19 VACCINE SAFETY WHILE INCORPORATING ADVERSE EVENTS ONTOLOGY
While vaccines are crucial to end the COVID-19 pandemic, public confidence in vaccine safety has always been vulnerable. Many statistical methods have been applied to VAERS (Vaccine Adverse Event Reporting System) database to study the safety of COVID-19 vaccines. However, none of these methods considered the adverse event (AE) ontology. AEs are naturally related; for example, events of retching, dysphagia, and reflux are all related to an abnormal digestive system. Explicitly bringing AE relationships into the model can aid in the detection of true AE signals amid the noise while reducing false positives. We propose a Bayesian graph-assisted signal selection (BGrass) model to simultaneously estimate all AEs while incorporating the network of dependence between AEs. Under a fully Bayesian inference framework, we also propose a negative control approach to mitigate the reporting bias and an enrichment approach to detecting AE groups of concern. For posterior computation we construct an equivalent model representation and develop an efficient Gibbs sampler. We evaluate the performance of BGrass via extensive simulations. To study the safety of COVID-19 vaccines, we apply BGrass to analyze approximately one million VAERS reports (01/01/2016-12/24/2021) involving more than 800 AEs. In particular, we found that blood clots (including deep vein thrombosis, thrombosis, and pulmonary embolism) are more likely to be reported after COVID-19 vaccination, compared to influenza vaccines. They are also reported more often for Johnson & Johnson-Janssen vaccine, compared to mRNA-based COVID-19 vaccines. A user-friendly R package BGrass that implements the proposed methods to assess vaccine safety is included in the Supplementary Material and is publicly available at https://github.com/BangyaoZhao/BGrass.
TARGETING UNDERREPRESENTED POPULATIONS IN PRECISION MEDICINE: A FEDERATED TRANSFER LEARNING APPROACH
The limited representation of minorities and disadvantaged populations in large-scale clinical and genomics research poses a significant barrier to translating precision medicine research into practice. Prediction models are likely to underperform in underrepresented populations due to heterogeneity across populations, thereby exacerbating known health disparities. To address this issue, we propose FETA, a two-way data integration method that leverages a federated transfer learning approach to integrate heterogeneous data from diverse populations and multiple healthcare institutions, with a focus on a target population of interest having limited sample sizes. We show that FETA achieves performance comparable to the pooled analysis, where individual-level data is shared across institutions, with only a small number of communications across participating sites. Our theoretical analysis and simulation study demonstrate how FETA's estimation accuracy is influenced by communication budgets, privacy restrictions, and heterogeneity across populations. We apply FETA to multisite data from the electronic Medical Records and Genomics (eMERGE) Network to construct genetic risk prediction models for extreme obesity. Compared to models trained using target data only, source data only, and all data without accounting for population-level differences, FETA shows superior predictive performance. FETA has the potential to improve estimation and prediction accuracy in underrepresented populations and reduce the gap in model performance across populations.