A bacterial glycolipid essential for membrane protein integration
The proper conformation and orientation of membrane protein integration in cells is an important biological event. Interestingly, a new factor named MPIase (membrane protein integrase) was proven essential in this process in Escherichia coli, besides proteinaceous factors, such as Sec translocons and an insertase YidC. A combination of spectroscopic analyses and synthetic work has revealed that MPIase is a glycolipid despite its enzyme-like activity. MPIase has a long glycan chain comprised of repeating trisaccharide units, a pyrophosphate linker, and a diacylglycerol anchor. In order to determine the mechanism of its activity, we synthesized a trisaccharyl pyrophospholipid termed mini-MPIase-3, a minimal unit of MPIase, and its derivatives. A significant activity of mini-MPIase-3 indicated that it involves an essential structure for membrane protein integration. We also analyzed intermolecular interactions of MPIase or its synthetic analogs with a model substrate protein using physicochemical methods. The structure-activity relationship studies demonstrated that the glycan part of MPIase prevents the aggregation of substrate proteins, and the 6-O-acetyl group on glucosamine and the phosphate of MPIase play important roles for interactions with substrate proteins. MPIase serves at an initial step in the Sec-independent integration, whereas YidC, proton motive force, and/or SecYEG cooperatively function(s) with MPIase at the following step in vivo. Furthermore, depletion of the biosynthetic enzyme demonstrated that MPIase is crucial for membrane protein integration and cell growth. Thus, we elucidated new biological functions of glycolipids using a combination of synthetic chemistry, biochemistry, physicochemical measurements, and molecular-biological approaches.
Conformationally restricted donors for stereoselective glycosylation
In nucleophilic reactions using sugars as electrophiles, i.e., glycosyl donors, their conformation affects the generation rate or stability of the glycosyl cation intermediates and determines at which side of the S2-S1 borderline and at what rate the reaction occurs. In addition, changes in the conformation create the steric or stereoelectronic effects of the substituents, which also change the reaction rate and stereoselectivity. Bulky silyl protecting groups, uronic acid esters, and transannular structures have been utilized to change the conformation. Consequently, reactions with unique reactivities and stereoselectivities have been developed. In this chapter, a discussion of the reaction mechanisms relating stereoselectivity to conformation is provided.
Towards one-pot selective synthesis of cyclic oligosaccharides
In this chapter are described electrochemical routes to cyclic oligosaccharides. While automated electrochemical methods have been used to prepare linear oligosaccharides, their conversion to cyclic oligosaccharides proved to be a complex process. The concept of polyglycosylation offers an interesting alternative, and the process which has been developed is that of a one-pot electrochemical polyglycosylation-isomerization-cyclization (ePIC) process.
Multivalent lectin-carbohydrate interactions: Energetics and mechanisms of binding
The biological signaling properties of lectins, which are carbohydrate-binding proteins, are due to their ability to bind and cross-link multivalent glycoprotein receptors on the surface of normal and transformed cells. While the cross-linking properties of lectins with multivalent carbohydrates and glycoproteins are relatively well understood, the mechanisms of binding of lectins to multivalent glycoconjugates are less well understood. Recently, the thermodynamics of binding of lectins to synthetic clustered glycosides, a multivalent globular glycoprotein, and to linear glycoproteins (mucins) have been described. The results are consistent with a dynamic binding mechanism in which lectins bind and jump from carbohydrate to carbohydrate epitope in these molecules. Importantly, the mechanism of binding of lectins to mucins is similar to that for a variety of protein ligands binding to DNA. Recent analysis also shows that high-affinity lectin-mucin cross-linking interactions are driven by favorable entropy of binding that is associated with the bind and jump mechanism. The results suggest that the binding of ligands to biopolymers, in general, may involve a common mechanism that involves enhanced entropic effects which facilitate binding and subsequent complex formation including enzymology.
Chemical synthesis of sialoglyco-architectures
The synthesis of sialic acid-containing molecules has posed a formidable challenge to carbohydrate chemists for over 50 years. Our research group has intensively searched for robust chemistry to enable the construction of a broad spectrum of sialic acid-containing molecules to advance the understanding and application of their biological functions. Herein, we describe our research findings on the development of sialic acid donors for α-selective glycosidation and the chemical synthesis of sialic acid- containing molecules, with a special focus on gangliosides and their fluorescent probes.
Computational modeling of protein-carbohydrate interactions: Current trends and future challenges
The article leads the reader through an up-to-date presentation of the concepts, developments, and main applications of computational modeling to study protein-carbohydrate interactions. It follows with the presentation of some current issues and perspectives arising from the expected evolution of generic methodological developments in deep learning, immersive analytics, and virtual reality for molecular visualization and data management. Such methodological developments for macromolecular interactions would greatly benefit a wide range of scientific endeavors in the field of carbohydrate chemistry and biochemistry, including the following interrelated efforts dealing with highly crowded media, with examples concerning glycoside transferases, the extracellular matrix, and the exploration of interactions between complex carbohydrates and intrinsically disordered proteins.
1-Amino-1-deoxy-d-fructose ("fructosamine") and its derivatives: An update
1-Amino-1-deoxy-d-fructose (fructosamine, FN) derivatives are omnipresent in all living organisms, as a result of non-enzymatic condensation and Amadori rearrangement reactions between free glucose and biogenic amines such as amino acids, polypeptides, or aminophospholipids. Over decades, steady interest in fructosamine was largely sustained by its role as a key intermediate structure in the Maillard reaction that is responsible for the organoleptic and nutritional value of thermally processed foods, and for pathophysiological effects of hyperglycemia in diabetes. New trends in fructosamine research include the discovery and engineering of FN-processing enzymes, development of advanced tools for hyperglycemia monitoring, and evaluation of the therapeutic potential of both fructosamines and FN-recognizing proteins. This article covers developments in the field of fructosamine and its derivatives since 2010 and attempts to ascertain challenges in future research.
1-Amino-1-deoxy-d-fructose ("fructosamine") and its derivatives
Fructosamine has long been considered as a key intermediate of the Maillard reaction, which to a large extent is responsible for specific aroma, taste, and color formation in thermally processed or dehydrated foods. Since the 1980s, however, as a product of the Amadori rearrangement reaction between glucose and biologically significant amines such as proteins, fructosamine has experienced a boom in biomedical research, mainly due to its relevance to pathologies in diabetes and aging. In this chapter, we assess the scope of the knowledge on and applications of fructosamine-related molecules in chemistry, food, and health sciences, as reflected mostly in publications within the past decade. Methods of fructosamine synthesis and analysis, its chemical, and biological properties, and degradation reactions, together with fructosamine-modifying and -recognizing proteins are surveyed.
Mechanism of multivalent glycoconjugate-lectin interaction: An update
Lectins are predominantly oligomeric proteins with several binding sites per molecule. Glycoconjugates are their natural ligands, which often possess multiple binding epitopes. Thus, lectin-glycoconjugate interactions are mostly multivalent in nature. The mechanism of multivalent binding is fundamentally different from those described for monovalent interactions in textbooks and research papers. Over the years, binding studies that make use of different lectins and a variety of multivalent glycoconjugate ligands were conducted in order to understand the underlying principles of multivalency. Starting with seemingly simple synthetic multivalent analogs, systematic studies were carried out using natural glycoconjugate ligands with increasing valency and complexity. Those ligands included multivalent glycoproteins, polyvalent polysaccharides, including glycosaminoglycans, as well as supra-valent mucins and proteoglycans. Models and mechanisms of multivalent binding derived from quantitative data are summarized in the present updated review.
Yamada's carbohydrate chemistry
This chapter describes the 21-year history of research conducted by Professor Hidetoshi Yamada. Sugars often exist in a six-membered ring structure, and the equatorial-rich chair conformation is stable. In contrast, its pyranose ring in a biological glycosylation is easily deformed and changed by various factors. Therefore, controlling the steric conformation of the pyranose ring is a great starting point to influence the stereoselectivity of the glycosylation reaction. His research developed stereoselective glycosylation reactions by deforming the sugar ring from the most stable equatorial-rich chair conformation. Initially, the research began to restrict the pyranose ring into the axial-rich chair form. The evolution to the locked skew-boat system allowed highly selective glycosylation by bulky silyl-protected or o-xylylene-bridged glycosyl donors. Development of the 1,1'-(ethane-1,2-diyl)dibenzene-2,2'-bis(methylene) bridging group created that which is known as the supple conformation system, which when combined with an α-selective glycosylation, led to the remarkable synthesis of the smallest cyclodextrins on record. Professor Yamada's consistent research in these areas willfully contributed to the development of carbohydrate chemistry.
Boron-mediated aglycon delivery (BMAD) for the stereoselective synthesis of 1,2-cis glycosides
1,2-cis Glycosides are frequently found in biologically active natural products, pharmaceutical compounds, and highly functional materials. Therefore, elucidating the role of mechanism of their biological activities will help clarify the structure-activity relationships of these diverse compounds and create new lead compounds for pharmaceuticals by modifying their structures. However, unlike 1,2-trans glycosides, the stereoselective synthesis of 1,2-cis glycosides remains difficult due to the nonavailability of neighboring group participation from the 2-O-acyl functionalities of the glycosyl donors. In this context, we recently developed organoboron-catalyzed 1,2-cis-stereoselecitve glycosylations, called boron-mediated aglycon delivery (BMAD) methods. In this review article, we introduce the BMAD methods and several examples of their application to the synthesis of biologically active glycosides.
Synthesis of homogeneous glycoproteins with diverse N-glycans
In the post-genomic era, post- and co-translational modifications (P/C-TM) of proteins are known as the more essential elements for the activation of protein function. Among these protein modifications, glycosylation is one of the most abundant modifications in eukaryotic cells. The synthesis of glycoproteins with uniform glycan structures is essential for functional analysis of glycoproteins and biochemical research. For that purpose, chemical methods to synthesize glycoproteins with chemically uniform glycan structures have been developed. In this review, we highlight our recent advances in the preparation of homogeneous glycoproteins. Especially, we introduce both semi-synthesis and chemical synthesis of glycoproteins along with semi-synthesis of various complex-type N-glycans for the solid-phase synthesis of glycopeptide-thioesters.
Pseudo-glycoconjugates with a C-glycoside linkage
Work by the author and colleagues has been focused on the development of pseudo-glycans (pseudo-glycoconjugates), in which the O-glycosidic linkage of the natural-type glycan structure is replaced by a C-glycosidic linkage. These analogs are not degraded by cellular glycoside hydrolases and are thus expected to be useful molecular tools that may maintain the original biological activity for a long period in the cell. However, their biological potential is not yet well understood because only a few pseudo glycans have so far been synthesized. This article aims to provide a bird's-eye view of our recent studies on the creation of C-glycoside analogs of ganglioside GM3 based on the CHF-sialoside linkage, and summarizes the chemical insights acquired during our stereoselective synthesis of the C-sialoside bond, ultimately leading to pseudo-GM3. Conformational analysis of the synthesized CHF-sialoside disaccharides confirmed that the anticipated conformational control by F-atom introduction was successful, and furthermore, enhanced the biological activity. In order to improve access to C-glycoside analogs based on pseudo-GM3, it is still important to streamline the synthesis process. With this in mind, we designed and developed a direct C-glycosylation method using atom-transfer radical coupling, and employed it in syntheses of pseudo-isomaltose and pseudo-KRN7000.
Hidetoshi Yamada: His journey in the carbohydrate world
Professor Hidetoshi Yamada, who demonstrated his creativity in various respects, passed away in November 2019. His research targets were highly diverse, including sweet saponins, ellagitannins, novel cyclodextrins, and conformationally distorted donors for stereoselective glycosylations. In memory of his creativity, this chapter highlights his prominent achievements in carbohydrate chemistry.
Therapeutic in vivo synthetic chemistry using an artificial metalloenzyme with glycosylated human serum albumin
The concept of "therapeutic in vivo synthetic chemistry" refers to chemical synthesis in living systems using new-to-nature reactions for the treatment or diagnosis of diseases. This review summarizes our development of therapeutic in vivo synthetic chemistry using glycan-modified human serum albumin (glycoHSA) and utilizing the selective glycan-targeting and metal protective effects of metal catalysts. The four artificial metalloenzymes with glycoHSA provided good cancer treatment results based on on-site drug synthesis and selective cell-tagging strategies. Thus, we propose that therapeutic in vivo synthetic chemistry using glycoHSA as a new modality of therapy or diagnosis is applicable to a wide range of diseases.
Recent advances on glycosyltransferases involved in the biosynthesis of the proteoglycan linkage region
Proteoglycans (PGs) are an essential family of glycoproteins, which can play roles in many important biological events including cell proliferation, cancer development, and pathogen infections. Proteoglycans consist of a core protein with one or multiple glycosaminoglycan (GAG) chains, which are covalently attached to serine residues of serine-glycine dipeptide within the core protein through a common tetrasaccharide linkage. In the past three decades, four key glycosyl transferases involved in the biosynthesis of PG linkage have been discovered and investigated. This review aims to provide an overview on progress made on these four enzymes, with foci on enzyme expression/purification, substrate specificity, activity determination, product characterization, and structure-activity relationship analysis.