Acoustics Australia

BUY QUIET INITIATIVE IN THE USA
Beamer B, McCleery T and Hayden C
Noise-induced hearing loss is still considered one of the most common work-related illnesses in the United States of America. The U.S. National Institute for Occupational Safety and Health launched a national Buy Quiet campaign to raise awareness of the importance of purchasing quieter equipment. Buy Quiet encourages companies to seek out and demand quieter equipment thus driving the market to design and create quieter products. In the long run, investment in noise controls should be more prevalent as the market demands quieter products. This paradigm occurs as the market for quieter products expands both from the supply side (manufacturers) and the demand side (tool and equipment purchasers). The key to experiencing the reduced costs and increased benefits of Buy Quiet will be to develop partnerships between manufacturers and consumers. To this end, the U.S. National Institute for Occupational Safety and Health continues to work with partners to educate stakeholders about the risks and true costs of noise-induced hearing loss, as well as the economic benefits of buying quieter equipment.
The Efficacy of Anti-vibration Gloves
Hewitt S, Dong R, McDowell T and Welcome D
Anyone seeking to control the risks from vibration transmitted to the hands and arms may contemplate the use of anti-vibration gloves. To make an informed decision about any type of personal protective equipment, it is necessary to have performance data that allow the degree of protection to be estimated. The information provided with an anti-vibration glove may not be easy to understand without some background knowledge of how gloves are tested and does not provide any clear route for estimating likely protection. Some of the factors that influence the potential efficacy of an anti-vibration glove include how risks from hand-arm vibration exposure are assessed, how the standard test for a glove is carried out, the frequency range and direction of the vibration for which protection is sought, how much hand contact force or pressure is applied and the physical limitations due to glove material and construction. This paper reviews some of the background issues that are useful for potential purchasers of anti-vibration gloves. Ultimately, anti-vibration gloves cannot be relied on to provide sufficient and consistent protection to the wearer and before their use is contemplated all other available means of vibration control ought first to be implemented.
Uncovering effective strategies for hearing loss prevention
Morata TC and Meinke D
Occupational health agencies, researchers and policy makers have recognized the need for evidence on the effectiveness of interventions designed to reduce or prevent workplace injuries and illnesses. While many workplaces comply with legal or obligatory requirements and implement recommended interventions, few publications exist documenting the effectiveness of these actions. Additionally, some workplaces have discovered through their own processes, novel ways to reduce the risk of injury. Peer-reviewed information on the effectiveness of the many strategies and approaches currently in use could help correct weaknesses, or further encourage their adoption and expansion. The evaluation of intervention effectiveness would certainly contribute to improved worker health and safety. This need is particularly relevant regarding noise exposure in the workplace and hearing loss prevention interventions. In a 2006 review of the U.S. National Institute for Occupational Safety and Health (NIOSH) Hearing Loss Research Program, the independent National Academies of Sciences recommended that NIOSH place greater emphasis on identifying the effectiveness of hearing loss prevention measures on the basis of outcomes that are as closely related as possible to reducing noise exposure and work related hearing loss (http://www.nap.edu/openbook.php?record_id=11721). NIOSH used two different approaches to address that recommendation: the first one was to conduct research, including broad systematic reviews on the effectiveness of interventions to prevent occupational noise-induced hearing loss. The second was to create an award program, the Safe-In-Sound Excellence in Hearing Loss Prevention Award™, to identify and honor excellent real-world examples of noise control and other hearing loss prevention practices and innovations.
LANGUAGE EXPERIENCE SHAPES PROCESSING OF PITCH RELEVANT INFORMATION IN THE HUMAN BRAINSTEM AND AUDITORY CORTEX: ELECTROPHYSIOLOGICAL EVIDENCE
Krishnan A and Gandour JT
Pitch is a robust perceptual attribute that plays an important role in speech, language, and music. As such, it provides an analytic window to evaluate how neural activity relevant to pitch undergo transformation from early sensory to later cognitive stages of processing in a well coordinated hierarchical network that is subject to experience-dependent plasticity. We review recent evidence of language experience-dependent effects in pitch processing based on comparisons of native vs. nonnative speakers of a tonal language from electrophysiological recordings in the auditory brainstem and auditory cortex. We present evidence that shows enhanced representation of linguistically-relevant pitch dimensions or features at both the brainstem and cortical levels with a stimulus-dependent preferential activation of the right hemisphere in native speakers of a tone language. We argue that neural representation of pitch-relevant information in the brainstem and early sensory level processing in the auditory cortex is shaped by the perceptual salience of domain-specific features. While both stages of processing are shaped by language experience, neural representations are transformed and fundamentally different at each biological level of abstraction. The representation of pitch relevant information in the brainstem is more fine-grained spectrotemporally as it reflects sustained neural phase-locking to pitch relevant periodicities contained in the stimulus. In contrast, the cortical pitch relevant neural activity reflects primarily a series of transient temporal neural events synchronized to certain temporal attributes of the pitch contour. We argue that experience-dependent enhancement of pitch representation for Chinese listeners most likely reflects an interaction between higher-level cognitive processes and early sensory-level processing to improve representations of behaviorally-relevant features that contribute optimally to perception. It is our view that long-term experience shapes this adaptive process wherein the top-down connections provide selective gating of inputs to both cortical and subcortical structures to enhance neural responses to specific behaviorally-relevant attributes of the stimulus. A theoretical framework for a neural network is proposed involving coordination between local, feedforward, and feedback components that can account for experience-dependent enhancement of pitch representations at multiple levels of the auditory pathway. The ability to record brainstem and cortical pitch relevant responses concurrently may provide a new window to evaluate the online interplay between feedback, feedforward, and local intrinsic components in the hierarchical processing of pitch relevant information.
PLASTICITY IN THE ADULT CENTRAL AUDITORY SYSTEM
Irvine DR, Fallon JB and Kamke MR
The central auditory system retains into adulthood a remarkable capacity for plastic changes in the response characteristics of single neurons and the functional organization of groups of neurons. The most dramatic examples of this plasticity are provided by changes in frequency selectivity and organization as a consequence of either partial hearing loss or procedures that alter the significance of particular frequencies for the organism. Changes in temporal resolution are also seen as a consequence of altered experience. These forms of plasticity are likely to contribute to the improvements exhibited by cochlear implant users in the post-implantation period.
News Item
News Item
News Item
Acoustic Effect of Face Mask Design and Material Choice
Balamurali BT, Enyi T, Clarke CJ, Harn SY and Chen JM
The widespread adoption of face masks is now a standard public health response to the 2020 pandemic. Although studies have shown that wearing a face mask interferes with speech and intelligibility, relating the acoustic response of the mask to design parameters such as fabric choice, number of layers and mask geometry is not well understood. Using a dummy head mounted with a loudspeaker at its mouth generating a broadband signal, we report the acoustic response associated with 10 different masks (different material/design) and the effect of material layers; a small number of masks were found to be almost acoustically transparent (minimal losses). While different mask material and design result in different frequency responses, we find that material selection has somewhat greater influence on transmission characteristics than mask design or geometry choices.
News Item
Acoustics Australia
The Influence of Face Masks on Verbal Communication in Persian in the Presence of Background Noise in Healthcare Staff
Aliabadi M, Aghamiri ZS, Farhadian M, Shafiee Motlagh M and Hamidi Nahrani M
Wearing face masks has resulted in verbal communication being more challenging during the COVID-19 pandemic. This study aimed to investigate the effect of face masks on the speech comprehensibility of Persian nurses in healthcare settings. Twenty female nurses from the governmental hospitals randomly participated in an experiment on seven typical commercial face masks at two background noise levels. Nurses' speech intelligibility from a human talker when wearing each face mask was determined based on the speech discrimination score. The vocal effort of nurses wearing each face mask was determined based on the Borg CR10 scale. Based on the linear mixed model, the speech intelligibility of nurses from a human speaker wearing surgical masks, N95 masks, and a shield with face masks were approximately 10%, 20%, and 40-50% lower, respectively, than no-mask conditions ( < 0.01). The background noise decreased the speech intelligibility of nurses by approximately 22% ( < 0.01). The use of a face shield further decreased speech intelligibility up to 30% compared to using a face mask alone ( < 0.01). The vocal efforts of nurses when wearing surgical masks were not significant compared with the baseline vocal efforts ( > 0.05); however, vocal efforts of nurses when wearing N95 and N99 respirators were at an unacceptable level. The face masks had no considerable effect on the speech spectrum below 2.5 kHz; however, they reduced high frequencies by different values. Wearing face masks has a considerable impact on the verbal communication of nurses in Persian. The level of background noise in the healthcare setting can aggravate the effect sizes of face masks on speech comprehensibility.