CONVERGENCE PROPERTIES OF ADAPTIVE SYSTEMS AND THE DEFINITION OF EXPONENTIAL STABILITY
The convergence properties of adaptive systems in terms of excitation conditions on the regressor vector are well known. With persistent excitation of the regressor vector in model reference adaptive control the state error and the adaptation error are globally exponentially stable or, equivalently, exponentially stable in the large. When the excitation condition, however, is imposed on the reference input or the reference model state, it is often incorrectly concluded that the persistent excitation in those signals also implies exponential stability in the large. The definition of persistent excitation is revisited so as to address some possible confusion in the adaptive control literature. It is then shown that persistent excitation of the reference model only implies local persistent excitation (weak persistent excitation). Weak persistent excitation of the regressor is still sufficient for uniform asymptotic stability in the large, but not exponential stability in the large. We show that there exists an infinite region in the state-space of adaptive systems where the state rate is bounded. This infinite region with finite rate of convergence is shown to exist not only in classic open-loop reference model adaptive systems but also in a new class of closed-loop reference model adaptive systems.
IDENTIFIABILITY OF INFECTION MODEL PARAMETERS EARLY IN AN EPIDEMIC
It is known that the parameters in the deterministic and stochastic SEIR epidemic models are structurally identifiable. For example, from knowledge of the infected population time series () during the entire epidemic, the parameters can be successfully estimated. In this article we observe that estimation will fail in practice if only infected case data during the early part of the epidemic (prepeak) is available. This fact can be explained using a well-known phenomenon called dynamical compensation. We use this concept to derive an unidentifiability manifold in the parameter space of SEIR that consists of parameters indistinguishable from () early in the epidemic. Thus, identifiability depends on the extent of the system trajectory that is available for observation. Although the existence of the unidentifiability manifold obstructs the ability to exactly determine the parameters, we suggest that it may be useful for uncertainty quantification purposes. A variant of SEIR recently proposed for COVID-19 modeling is also analyzed, and an analogous unidentifiability surface is derived.