LPS-Induced Acute Lung Injury: Analysis of the Development and Suppression by the TNF-α-Targeting Aptamer
Acute lung injury (ALI) is a specific form of lung inflammation characterized by diffuse alveolar damage, noncardiogenic pulmonary edema, as well as a pulmonary and systemic inflammation. The pathogenesis of ALI involves a cascade inflammatory response accompanied by an increase in the local and systemic levels of proinflammatory cytokines and chemokines. The development of molecular tools targeting key components of cytokine signaling appears to be a promising approach in ALI treatment. The development of lipopolysaccharide (LPS)-induced ALI, as well as the feasibility of suppressing it by an aptamer targeting the proinflammatory cytokine TNF-α, was studied in a mouse model. The TNF-α level was shown to increase significantly and remain steadily high during the development of ALI. LPS-induced morphological signs of inflammation in the respiratory system become most pronounced 24 h after induction. Intranasal administration of TNF-α-targeting aptamers conjugated with polyethylene glycol (PEG-aptTNF-α) to mice with ALI reduced the intensity of inflammatory changes in lung tissue. Assessment of the levels of potential TNF-α target genes (, , and ) showed that their expression levels in the lungs increase during ALI development, while declining after the application of PEG-aptTNF-α. Therefore, topical use of TNF-α- targeting aptamers may be an efficient tool for treating ALI and other inflammatory lung diseases.
An Attenuated and Highly Immunogenic Variant of the Vaccinia Virus
The vaccinia virus (VACV) has been used for prophylactic immunization against smallpox for many decades. However, the VACV-based vaccine had been highly reactogenic. Therefore, after the eradication of smallpox, the World Health Organization in 1980 recommended that vaccination against this infection be discontinued. As a result, there has been a rise in the occurrence of orthopoxvirus infections in humans in recent years, with the most severe being the 2022 monkeypox epidemic that reached all continents. Thus, it is crucial to address the pressing matter of developing safe and highly immunogenic vaccines for new generations to combat orthopoxvirus infections. In a previous study, we created a LAD strain by modifying the LIVP (L) VACV strain, which is used as a first-generation smallpox vaccine in Russia. This modification involved introducing mutations in the gene to enhance extracellular virion production and deleting the gene to counteract the antibody response to the viral infection. In this study, a strain LADA was created with an additional deletion in the DNA of the LAD strain gene. This gene directs the production of a major non-virion immunogen. The findings indicate that the LADA VACV variant exhibits lower levels of reactogenicity in BALB/c mice during intranasal infection, as compared to the original L strain. Following intradermal immunization with a 105 PFU dose, both the LAD and LADA strains were found to induce a significantly enhanced cellular immune response in mice when compared to the L strain. At the same time, the highest level of virus-specific IFN-γ producing cells for the LAD variant was detected on the 7 day post-immunization (dpi), whereas for LADA, it was observed on 14 dpi. The LAD and LADA strains induced significantly elevated levels of VACV-specific IgG compared to the original L strain, particularly between 28 and 56 dpi. The vaccinated mice were intranasally infected with the cowpox virus at a dose of 460 LD to assess the protective immunity at 62 dpi. The LADA virus conferred complete protection to mice, with the LAD strain providing 70% protection and the parent strain L offering protection to only 60% of the animals.
Insights into the Functioning of the D-amino Acid Transaminase from Haliscomenobacter Hydrossis via a Structural and Spectral Analysis of its Complex with 3-Aminooxypropionic Acid
Pyridoxal 5'-phosphate-dependent enzymes play a crucial role in nitrogen metabolism. Carbonyl compounds, such as O-substituted hydroxylamines, stand out among numerous specific inhibitors of these enzymes, including those of practical importance, because they react with pyridoxal 5'-phosphate in the active site of the enzymes to form stable oximes. O-substituted hydroxylamines mimic the side group of amino acid substrates, thus providing highly potent and specific inhibition of the corresponding enzymes. The interaction between D-amino acid transaminase from bacterium and 3-aminooxypropionic acid was studied in the present work. The structural and spectral analyses of the complex of this transaminase with 3-aminooxypropionic acid allowed us to clarify some features of the organization and functioning of its active site and illustrate one of the mechanisms of inhibition by the specific substrate, D-glutamic acid.
7-Methylguanine Inhibits Colon Cancer Growth in Vivo
7-Methylguanine (7-MG) is a natural inhibitor of poly(ADP-ribose) polymerase 1 and tRNA-guanine transglycosylase, the enzymatic activity of which is central for the proliferation of cancer cells. Recently, a number of preclinical tests have demonstrated the safety of 7-MG and a regimen of intragastric administration was established in mice. In the present work, the pharmacological activity of 7-MG was studied in BALB/c and BALB/c nude mice with transplanted tumors. It was found that 7-MG effectively penetrates tumor tissue and suppresses colon adenocarcinoma growth in the Akatol model, as well as in a xenograft model with human HCT116 cells.
Experimental Use of Common Marmosets (Callithrix jacchus) in Preclinical Trials of Antiviral Vaccines
Common marmoset (, CM) is a New World primate species that is of interest for preclinical trials of immunobiological products. In this study, we describe the approaches to long-term laboratory breeding and maintenance of CMs. We also establish the reference values of the main complete blood count and serum chemistry parameters evaluated during preclinical trials of immunobiological products and describe the histological characteristics of CM lymphoid organs during the development of post-vaccination immune response. We show that CMs bred in laboratory conditions excluding background infectious pathology are a relevant model that allows for a high degree of reliability in characterizing the safety and immunogenicity profile of antiviral vaccines during preclinical trials.
Cannula Implantation Reduces the Severity of the Beta Amyloid Effect on Peroxidized Lipids and Glutathione Levels in the Brain of BALB/c Mice
Sporadic Alzheimer's disease (sAD) is the most common of neurodegenerative disorders. The lack of effective therapy indicates that the mechanisms of sAD development remain poorly understood. To investigate this pathology in animals, intracerebroventricular injection of β-amyloid peptide (Aβ) using a Hamilton syringe, either during stereotactic surgery or through a pre-implanted cannula, is used. In this study, we analyzed the effect of chronic cannula implantation on the severity of Aβ effects at the behavioral, histological, and biochemical levels. The results showed that the local damage to neural tissue caused by cannulation has no bearing on the effect of Aβ on animal behavior and the microglial parameters of the unilateral hippocampus two weeks after the Aβ administration. However, cannula implantation fundamentally modifies some biochemical markers of the oxidative stress that occurs in the brain tissue in response to Aβ administration. Thus, the presence of a cannula reduces the severity of the Aβ impact on the levels of peroxidized lipids and glutathione two- and 10-fold, respectively. It is important to note that the detected changes are chronic and systemic. This is known because the homogenate of the entire contralateral (in relation to the cannula implantation site) hemisphere was analyzed, and the analysis was performed two weeks after implantation. At the same time, cannulation does not affect the rate of reactive oxygen species production. The obtained data indicate that chronic implantation of a cannula into the brain of experimental animals fundamentally distorts some parameters of oxidative stress in the neural tissue, which are widely used to assess the severity of experimental Alzheimer's-type diseases.
Evolutionary Perspectives on Human-Artificial Intelligence Convergence
In this analytical review, we explore the potential impact of the rapid proliferation of artificial intelligence (AI) tools on the biosphere and noosphere, suggesting that the trend may lead to a transformative event that could be termed "Human-AI integration." We argue that this integration could give rise to novel lifeforms, associations, and hierarchies, resulting in competitive advantages and increased complexity of structural organizations within both the biosphere and noosphere. Our central premise emphasizes the importance of human-AI integration as a global adaptive response crucial for our civilization's survival amidst a rapidly changing environment. The convergence may initially manifest itself through symbiotic, endosymbiotic, or other mutualistic relationships, such as domestication, contingent on the rate at which AI systems achieve autonomy and develop survival instincts akin to those of biological organisms. We investigate potential drivers of these scenarios, addressing the ethical and existential challenges arising from the AI-driven transformation of the biosphere and noosphere, and considering potential trade-offs. Additionally, we discuss the application of complexity and the balance between competition and cooperation to better comprehend and navigate these transformative scenarios.
Ceramides As Potential New Predictors of the Severity of Acute Coronary Syndrome in Conjunction with SARS-CoV-2 Infection
Acute coronary events (ACEs) associated with a SARS-CoV-2 infection can significantly differ from classic ACEs. New biomarkers, such as ceramides, may help in the diagnosis and treatment of this disease. This study included 73 ACE patients for whom the SARS-CoV-2 infection was verified. Two subgroups were formed: the favorable outcome subgroup and the fatal outcome subgroup. Plasma samples were collected from all patients at the time of admission for a metabolomic analysis. The analysis of metabolites revealed that the ceramide levels were significantly lower in the fatal outcome subgroup than in the survivor subgroup. Therefore, determining ceramide levels in patients with ACEs in conjunction with COVID-19 may help assess the prognosis of these patients and manage their risks.
Abundance of Tumor-Infiltrating B Cells in Human Epithelial Malignancies
Cancer is a major global health problem. The type of malignant neoplasm and the potency of the immune response against tumors are two of the key factors influencing the outcome of the disease. The degree of tumor infiltration by lymphocytes plays an important role in antitumor response development, generally correlating with a favorable prognosis of treatment for certain cancers. We analyzed the abundance of tumor-infiltrating B cells (TIBs) in solid tumors of different cancers. TIBs were shown to be more abundant in colon and sigmoid colon cancer samples compared with cecal, rectal, and kidney cancer samples. The median and interquartile range of the TIB fraction were 11.5% and 4-20% in colon cancer, 6% and 3-11% in sigmoid colon cancer, 2.7% and 0.7-3.7% in cecal cancer, 2.5% and 0.9-3.6% in rectal cancer, 1.4% and 1.0-2.3% in kidney cancer, and 3.0% and 1.8-12% in lung cancer, respectively. However, there were no significant differences in the abundance of TIBs among samples at different stages of the cancer. Hence, investigation of the B cell response in colon cancer is of particular interest, since increased quantities of TIBs may indicate the existence of immunogenic tumor markers or the cell-cell interactions involved in disease progression. We believe that studying the diversity of TIBs in colon cancer will increaseour understanding of the mechanisms of the disease, contributing to the identification of new molecular targets for targeted oncotherapy.
Synthetic Lesions with a Fluorescein Carbamoyl Group As Analogs of Bulky Lesions Removable by Nucleotide Excision Repair: A Comparative Study on Properties
Mammalian nucleotide excision repair (NER), known for its broad substrate specificity, is responsible for removal of bulky lesions from DNA. Over 30 proteins are involved in NER, which includes two distinct pathways: global genome NER and transcription-coupled repair. The complexity of these processes, the use of extended DNA substrates, and the presence of bulky DNA lesions induced by chemotherapy have driven researchers to seek more effective methods by which to assess NER activity, as well as to develop model DNAs that serve as efficient substrates for studying lesion removal. In this work, we conducted a comparative analysis of model DNAs containing bulky lesions. One of these lesions, N-[6-{5(6)-fluoresceinylcarbamoyl}hexanoyl]-3-amino-1,2-propanediol (nFluL), is known to be efficiently recognized and excised by NER. The second lesion, N-[6-{5(6)-fluoresceinylcarbamoyl}]-3-amino-1,2-propanediol (nFluS), has not previously been tested as a substrate for NER. To evaluate the efficiency of lesion excision, a 3'-terminal labeling method was employed to analyze the excision products. The results showed that nFluS is removed approximately twice as efficiently as nFluL. Comparative analyses of the effects of nFluL and nFluS on the geometry and thermal stability of DNA duplexes - combined with spectrophotometric and spectrofluorimetric titrations of these DNAs with complementary strands - were performed next. They revealed that the absence of an extended flexible linker in nFluS alters the interaction of the bulky fluorescein moiety with neighboring nitrogenous bases in double-stranded DNA. This absence is associated with the enhanced efficiency of excision of nFluS, making it a more effective synthetic analog for studying bulky-lesion removal in model DNA substrates.
The Features of Beta-Amyloid Phosphorylation in Alzheimer's Disease
Accumulation of neurotoxic aggregates of beta-amyloid peptides (Aβ) is a hallmark of Alzheimer's disease (AD) progression. Post-translational modifications (PTMs) increase Aβ aggregation and cytotoxicity, and the content of specific Aβ proteoforms is elevated in senile plaques of AD patients. The pathophysiological mechanisms of aggregate formation and the role of Aβ proteoforms need thorough study both to understand the role played by specific processes in the initiation of neuronal degradation and to find effective preventive means of therapeutic action. The present work investigates the dynamics of accumulation of phosphorylated serine-8 proteoform Aβ (pSer8-Aβ) using the 5xFAD mouse amyloid model. Aβ samples from human cerebrospinal fluid (CSF) and brain were also investigated. Western blot studies using 1E4E11 and 4G8 antibodies showed that accumulation of pSer8-Aβ in mouse brain starts as early as at the age of 3 months and reaches a maximum by the age of 14-17 months, which is generally similar to the dynamics of accumulation of the total pool of Aβ peptides. The pSer8-Aβ level in human CSF in AD patients can reach ~ 1-10% of the total amount of Aβ. Mass spectrometric analysis showed that Aβ phosphorylation by the Ser8, Tyr10, and Ser26 residues in brain tissues, as well as phosphorylation of the APP by Thr719 residue, is possible. These findings support the assumption that pSer8-Aβ proteoforms are involved in amyloidosis in AD. KEYWORDS Beta-amyloid, mass spectrometry, Alzheimer's disease, phosphorylation.
Genome Characterization of Two Novel Lactococcus lactis Phages vL_296 and vL_20A
Fermented dairy products are produced using starter cultures. They ferment milk to create products with a certain texture, aroma, and taste. However, the lactic acid bacteria used in this production are prone to bacteriophage infection. We examined the genomes of two newly discovered bacteriophage species that were isolated from cheese whey during the cheesemaking process. We have determined the species and the lytic spectrum of these bacteriophages. Phages vL_20A and vL_296 were isolated using lactococcal indicator cultures. They have unique lytic spectra: of the 21 possible identified host bacteria, only four are shared amongst them. The vL_20A and vL_296 genomes comprise linear double-stranded DNA lengths with 21,909 and 22,667 nucleotide pairs, respectively. (ANI 93.3 and 92.6, respectively) is the closest to the phages vL_20A and vL_296. The analysis of the CRISPR spacers in the genomes of starter cultures did not reveal any phage-specific vL_20A or vL_296 among them. This study highlights the biodiversity of phages, their widespread presence in dairy products, and their virulence. However, the virulence of phages is balanced by the presence of a significant number of bacterial strains with different sensitivities to phages in the starter cultures due to the bacterial immune system.
5'-Noraristeromycin Repurposing: Well-known S-Adenosyl-L-homocysteine Hydrolase Inhibitor As a Potential Drug Against Leukemia
5'-Noraristeromycin as a racemic mixture of enantiomers was found to exhibit a pronounced cytotoxic effect on leukemia cells; IC for the Jurkat, K562, and THP-1 cell lines was 7.3, 1.3, and 3.7 μM, respectively. The general toxicity of 5'-noraristeromycin was studied in experiments on white mice upon single-dose intragastric administration; toxicometric parameters were determined, and the clinical and pathomorphological presentation of acute intoxication was studied. LD of the substance was shown to be 63.2 (52.7÷75.8) mg/kg; LD16, 44.7 mg/kg, and LD84, 89.4 mg/kg. Administration of the substance at a dose within the studied dose range is accompanied by systemic damage to the internal organs and tissues of the experimental animals.
Molecular Mechanisms of Drosophila Hematopoiesis
As a model organism, the fruit fly () has assumed a leading position in modern biological research. The genetic system has a number of advantages making it a key model in investigating the molecular mechanisms of metazoan developmental processes. Over the past two decades, significant progress has been made in understanding the molecular mechanisms regulating hematopoiesis. This review discusses the major advances in investigating the molecular mechanisms involved in maintaining the population of multipotent progenitor cells and their differentiation into mature hemocytes in the hematopoietic organ of the larva. The use of the hematopoietic organ as a model system for hematopoiesis has allowed to characterize the complex interactions between signaling pathways and transcription factors in regulating the maintenance and differentiation of progenitor cells through the signals from the hematopoietic niche, autocrine and paracrine signals, and the signals emanated by differentiated cells.
Reconstruction of the Reaction of Andalusicin Lantibiotic Modification by Lanthionine Synthetase AncKC in a Heterologous Escherichia coli System
The increasing resistance of microorganisms to antibiotics makes it a necessity that we search for new antimicrobial agents. Due to their genetically encoded nature, peptides are promising candidates for new antimicrobial drugs. Lantipeptide andalusicin exhibits significant antimicrobial activity against Gram-positive bacteria, making it a promising scaffold for the development of DNA-encoded libraries of lantibiotics. In this study, the modification reaction of andalusicin by class III lanthionine synthetase AncKC was reconstructed in a heterologous system. The results obtained open possibilities for creating novel peptide- based antimicrobial agents.
Dihydroquercetin-Loaded Liposomes Change Fibrous Tissue Distribution in the Bleomycin-Induced Fibrosis Model
The effects of the antioxidant dihydroquercetin (DHQ) were studied in a model of pulmonary fibrosis. DHQ penetration into the lesion was facilitated by encapsulation into liposomes. Pulmonary fibrosis was modeled in rats by intratracheal injection of bleomycin. For the first 7 days, the rats in the treatment group received a liposomal emulsion with DHQ, while in the comparator group rats received saline. In the control group, intact rats did not receive any exposure. Thirty days after the initiation, lung function and the pathological lesion volume were assessed by 7T 1H MRI and the lungs were taken for histologic examination. The proportion of fibrous tissue was counted by Masson's trichrome staining. Both experimental groups were characterized by a significant functional pulmonary deficiency, with low mortality and a small lesion area. In the rats treated with DHQ, the distribution of fibrous tissue was significantly altered. Significantly more fibrous tissue was found in the center of the lesion, while significantly less was in the interstitial space of alveoli. Lung density at the same time was lower in the treated lungs. Dihydroquercetin encapsulated in liposomes affects the mechanisms of bleomycin-induced pulmonary fibrosis progression in rats. While accelerated fibrosis of the lesion can restrict inflammatory processes, delayed fibrosis of the interstitium can further improve the functional state of the lungs.
The Correlation Patterns of miRNA Expression with Targeted mRNA Transcripts in Glioma Patients with Wild-Type and Mutated Isocitrate Dehydrogenase (IDH) Genotypes
Low-grade gliomas are divided into two main genetic phenotypes based on the presence or absence of mutations in the isocitrate dehydrogenase () genes. The mutated IDH phenotype (IDHmut), in contrast to the wild-type phenotype (IDHwt), is characterized by a more positive response to pharmacological intervention and a significantly longer survival time. In this study, we analyzed the differential co-expression of 225,000 microRNA-mRNA pairs at the level of correlations between microRNA levels and their potential mRNA targets. Analysis of the associative relationships of individual representatives of the selected pairs revealed that the level of mRNAs encoded by the , , , , and genes associated with aggressive progression of glioma was increased in the IDHwt group. Meanwhile, the levels of miRNA-182, miRNA-455, and miRNA-891a associated with the negative prognosis in glioma were generally increased in the IDHmut group. Most (16/21) of the detected 21 microRNA-mRNA pairs with significant difference in regulation between IDHwt and IDHmut glioma samples had a weak or moderate positive correlation in IDHmut samples and a negative correlation in IDHwt samples. Therefore, our findings indicate that glioma samples from the IDHmut group with a positive prognosis potentially have a significantly less pronounced ability to microRNA-mediated regulation. We further suggest that such physiological disorders can lead to reduced tumor viability, resulting in an increased ability of the host to resist the spread of a malignant transformation of this genetic phenotype.
Evaluation of HER2/neu Expression in Metastatic Axillary Lymph Node Tissue of Breast Cancer Patients Using [99mTc]Tc-(HE)3-G3
Anatomic visualization and molecular typing of metastatic regional lymph nodes in breast cancer patients are a serious clinical challenge in modern oncology. According to the results of previous studies, [99mTc]Tc-(HE)3-G3 has proven to be a promising diagnostic agent in differentiating the HER2/neu receptor status in primary breast tumors ( < 0.05, Mann-Whitney test). In this regard, the purpose of this study is to explore the possibilities of using [99mTc]Tc-(HE)3-G3 to determine the HER2/neu receptor status in the metastatic axillary lymph nodes (mALNs) of breast cancer patients. The study was conducted using clinical material from 20 breast cancer patients (T2-4N1-3M0-1) before systemic therapy (10 patients with positive and 10 patients with negative HER2/neu expression in mALNs) who underwent SPECT/CT scan 4 h after the administration of [99mTc]Tc-(HE)3-G3. Morphological and immunohistochemical studies of mALNs with assessment of the HER2/neu status were performed on all patients. We found that mALN-to-background and mALN-to-latissimus dorsi muscle ratios for [99mTc]Tc-(HE)3-G3 uptake 4 h after its administration may be used for typing of the HER2/neu status in mALNs of breast cancer patients ( < 0.05, Mann-Whitney test). In that case, sensitivity and specificity for the mALN-to-background ratio were identical at 80%, with the threshold value being > 12.25.
Specific Activation of the Expression of Growth Factor Genes in Expi293F Human Cells Using CRISPR/Cas9-SAM Technology Increases Their Proliferation
Human cell lines play an important role in biotechnology and pharmacology. For them to grow, they need complex nutrient media containing signaling proteins - growth factors. We have tested a new approach that reduces the need of cultured human cell lines for exogenous growth factors. This approach is based on the generation of a modified cell with a selectively activated gene expression of one of the endogenous growth factors: IGF-1, FGF-2, or EIF3I. We modified the Expi293F cell line, a HEK293 cell line variant widely used in the production of recombinant proteins. Gene expression of the selected growth factors in these cells was activated using CRISPR/Cas9 technology with the synergistic activation mediators CRISPR/Cas9-SAM, which increased the expression of the selected genes at both mRNA and protein levels. Upon culturing under standard conditions, the modified lines exhibited increased proliferation. A synergistic effect was observed in co-culture of the three modified lines. In our opinion, these results indicate that this approach is promising for efficient modification of cell lines used in biotechnology.
A Vector Nanoplatform for the Bioimaging of Deep-Seated Tumors
Today, in preclinical studies, optical bioimaging based on luminescence and fluorescence is indispensable in studying the development of neoplastic transformations, the proliferative activity of the tumor, its metastatic potential, as well as the therapeutic effect of antitumor agents. In order to expand the capabilities of optical imaging, sensors based on the bioluminescence resonance energy transfer (BRET) mechanism and, therefore, independent of an external light source are being developed. A targeted nanoplatform based on HER2-specific liposomes whose internal environment contains a genetically encoded BRET sensor was developed in this study to visualize deep-seated tumors characterized by overexpression of human epidermal growth factor receptor type 2 (HER2). The BRET sensor is a hybrid protein consisting of the highly catalytic luciferase NanoLuc (an energy donor) and a LSSmKate1 red fluorescent protein with a large Stokes shift (an energy acceptor). During the bioimaging of disseminated intraperitoneal tumors formed by HER2-positive SKOV3.ip1cells of serous ovarian cystadenocarcinoma, it was shown that the developed system is applicable in detecting deep-seated tumors of a certain molecular profile. The developed system can become an efficient platform for optimizing preclinical studies of novel targeted drugs.
Investigating the Structure of the Components of the PolyADP-Ribosylation System in Fusarium Fungi and Evaluating the Expression Dynamics of Its Key Genes
Poly(ADP-ribose) polymerase (PARP) is the key enzyme in polyADP-ribosylation, one of the main post-translational modifications. This enzyme is abundant in eukaryotic organisms. However, information on the PARP structure and its functions in members of the Fungi kingdom is very limited. In this study, we performed a bioinformatic search for homologs of PARP and its antagonist, PARG, in the genomes of four strains using their whole-genome sequences annotated and deposited in databases. The PH-1, ET-1, and Fo47 strains were shown to possess a single homolog of both PARP and PARG. In addition, the f. sp. strain 4287 contained four additional proteins comprising PARP catalytic domains whose structure was different from that of the remaining identified homologs. Partial nucleotide sequences encoding the catalytic domains of the PARP and PARG homologs were determined in 11 strains of 9 species deposited in all-Russian collections, and the phylogenetic properties of the analyzed genes were evaluated. In the toxigenic strain, we demonstrated up-regulation of the gene encoding the PARP homolog upon culturing under conditions stimulating the production of the DON mycotoxin, as well as up-regulation of the gene encoding PARG at later stages of growth. These findings indirectly indicate involvement of the polyADP-ribosylation system in the regulation of the genes responsible for DON biosynthesis.