Statistical Comparison and Assessment of Four Fire Emissions Inventories for 2013 and a Large Wildfire in the Western United States
Wildland fires produce smoke plumes that impact air quality and human health. To understand the effects of wildland fire smoke on humans, the amount and composition of the smoke plume must be quantified. Using a fire emissions inventory is one way to determine the emissions rate and composition of smoke plumes from individual fires. There are multiple fire emissions inventories, and each uses a different method to estimate emissions. This paper presents a comparison of four emissions inventories and their products: Fire INventory from NCAR (FINN version 1.5), Global Fire Emissions Database (GFED version 4s), Missoula Fire Labs Emissions Inventory (MFLEI (250 m) and MFLEI (10 km) products), and Wildland Fire Emissions Inventory System (WFEIS (MODIS) and WFEIS (MTBS) products). The outputs from these inventories are compared directly. Because there are no validation datasets for fire emissions, the outlying points from the Bayesian models developed for each inventory were compared with visible images and fire radiative power (FRP) data from satellite remote sensing. This comparison provides a framework to check fire emissions inventory data against additional data by providing a set of days to investigate closely. Results indicate that FINN and GFED likely underestimate emissions, while the MFLEI products likely overestimate emissions. No fire emissions inventory matched the temporal distribution of emissions from an external FRP dataset. A discussion of the differences impacting the emissions estimates from the four fire emissions inventories is provided, including a qualitative comparison of the methods and inputs used by each inventory and the associated strengths and limitations.
Navigating the wildfire-pandemic interface: Public perceptions of COVID-19 and the 2020 wildfire season in Arizona
COVID-19 has complicated wildfire management and public safety for the 2020 fire season. It is unclear whether COVID-19 has impacted the ability of residents in the wildland-urban interface to prepare for and evacuate from wildfire, or the extent to which residents feel their household's safety has been affected. Several areas with high wildfire risk are also experiencing record numbers of COVID-19 cases, including the state of Arizona in the southwestern United States. We conducted a mixed-mode survey of households in close proximity to two recent wildfires in rural Arizona to better understand whether residents living in the wildland-urban interface perceive COVID-19 as a factor in wildfire safety. Preliminary data suggest that the current challenges around collective action to address wildfire risk may be further exacerbated due to COVID-19, and that the current pandemic has potentially widened existing disparities in household capacity to conduct wildfire risk mitigation activities in the wildland-urban interface. Proactive planning for wildfire has also increased perceived ability to practice safe distancing from others during evacuation, highlighting the benefits that household planning for wildfire can have on other concurrent hazards. Parallels in both the wildfire and pandemic literature highlight vast opportunities for future research that can expand upon and advance our findings.
Spatial, Temporal, and Electrical Characteristics of Lightning in Reported Lightning-Initiated Wildfire Events
Analysis was performed to determine if a lightning flash could be associated with every reported lightning-initiated wildfire that grew to at least 4 km. In total, 905 lightning-initiated wildfires within CONUS between 2012 and 2015 were analyzed. Fixed and fire radius search methods showed that 81-88% of wildfires had a corresponding lightning flash within a 14 day period prior to the report date. The two methods showed that 52-60% of lightning-initiated wildfire were reported on the same day as the closest lightning flash. The fire radius method indicated the most promising spatial results, where the median distance between the closest lightning and the wildfire start location was 0.83 km, followed by a 75 percentile of 1.6 km, and a 95 percentile of 5.86 km. Ninety percent of the closest lightning flashes to wildfires were negative polarity. Maximum flash densities were less than 0.41 flashes km2 for the 24 hour period at the fire start location. The majority of lightning-initiated holdover events were observed in the Western CONUS, with a peak density in north-central Idaho. A twelve day holdover event from New Mexico was also discussed; outlining the opportunities and limitations of using lightning data to characterize wildfires.
Can Air Quality Management Drive Sustainable Fuels Management at the Temperate Wildland-Urban Interface?
Sustainable fire management has eluded all industrial societies. Given the growing number and magnitude of wildfire events, prescribed fire is being increasingly promoted as the key to reducing wildfire risk. However, smoke from prescribed fires can adversely affect public health and breach air quality standards. Here we propose that air quality standards can lead to the development and adoption of sustainable fire management approaches that lower the risk of economically and ecologically damaging wildfires while improving air quality and reducing climate-forcing emissions. For example, green fire breaks at the wildland-urban interface (WUI) can resist the spread of wildfires into urban areas. These could be created through mechanical thinning of trees, and then maintained by targeted prescribed fire to create biodiverse and aesthetically pleasing landscapes. The harvested woody debris could be used for pellets and other forms of bioenergy in residential space heating and electricity generation. Collectively, such an approach would reduce the negative health impacts of smoke pollution from wildfires, prescribed fires, and combustion of wood for domestic heating. We illustrate such possibilities by comparing current and potential fire management approaches in the environmentally similar landscapes of Vancouver Island in British Columbia, Canada and the island state of Tasmania in Australia.