International Journal of Genomics

Identification and Validation of Immune Implication of R-Spondin 1 and an R-Spondin 1-Related Prognostic Signature in Esophagus Cancer
Lin Y, Lou X, Li S, Cai W and Che T
R-spondin 1 (RSPO1), which encodes a secretory-activating protein, is a promising therapeutic target for various tumors. The aim of this study was to establish a robust RSPO1-related signature specific to esophageal cancer (ESCA). Our comprehensive study involved meticulous analysis of RSPO1 expression in ESCA tissues and validation across ESCA cell lines and clinical samples using The Cancer Genome Atlas (TCGA) and GTEx databases. Using TCGA-ESCA dataset, we employed single-sample gene set enrichment analysis (ssGSEA) to elucidate the complex interaction between RSPO1 expression and the abundance of 22 specific immune cell types infiltrating ESCA. The biological significance of RSPO1 was further elucidated using KEGG, GO, and GSEA, demonstrating its relevance to pivotal tumor and immune pathways. This study culminated in the construction of prognostic nomograms enriched by calibration curves, facilitating the projection of individual survival probabilities at intervals of one, three, and five years. A substantial decrease in RSPO1 expression was observed within ESCA tissues and cell lines compared to their normal esophageal counterparts, and a significant decrease in the proportion of activated dendritic cells was evident within ESCA, accompanied by an augmented presence of macrophages and naive B cells relative to normal tissue. GSEA and KEGG analyses showed that RSPO1 was associated with tumor and immune pathways. Additionally, an independent prognostic risk score based on the RSPO1-related gene signature was developed and validated for patients with ESCA. Finally, RT-qPCR and western blotting were performed to confirm RSPO1 expression in normal and ESCA cell lines and tissue samples. In summary, our investigation underscores the pivotal role of RSPO1 in orchestrating tumor immunity and proposes RSPO1 as a prospective target for immunotherapeutic interventions in ESCA. Furthermore, the intricate profile of the two RSPO1-related genes has emerged as a promising predictive biomarker with notable potential for application in ESCA.
Single-Cell RNA Sequencing Identifies Crucial Genes Influencing the Polarization of Tumor-Associated Macrophages in Liver Cancer
Xu K, Dong M, Wu Z, Luo L, Xie F, Li F, Huang H, Wang F, Xiong X and Wen Z
In the context of hepatocellular carcinoma (HCC), tumor-associated macrophages (TAMs) are pivotal for the immunosuppressive nature of the tumor microenvironment (TME). This investigation delves into the functional transformations of TAMs within the TME by leveraging single-cell transcriptomics to pinpoint critical genes influencing TAM subset polarization.
Genome-Wide Analyses of MADS-Box Genes Reveal Their Involvement in Seed Development and Oil Accumulation of Tea-Oil Tree ()
Zhang X, He W, Wang X, Duan Y, Li Y, Wang Y, Jiang Q, Liao B, Zhou S and Li Y
The seeds of produce high amount of oil, which can be broadly used in the fields of food, industry, and medicine. However, the molecular regulation mechanisms of seed development and oil accumulation in are unclear. In this study, evolutionary and expression analyses of the MADS-box gene family were performed across the genome for the first time. A total of 86 MADS-box genes () were identified, including 60 M-type and 26 MIKC members. More gene duplication events occurred in M-type subfamily (6) than that in MIKC subfamily (2), and genes were lost from the MIKC clade. Furthermore, 8, 15, and 17 differentially expressed genes (DEGs) were detected between three developmental stages of seed (S1/S2, S2/S3, and S1/S3), respectively. Among these DEGs, the and were highly expressed during the seed formation (S1 and S2), agreeing with their predicted functions to positively regulate the seed organogenesis and oil accumulation. While and showed increasing expression level with the seed maturation (S2 and S3), conforming to their potential roles in promoting the seed ripening. In all, these results revealed a critical role of MADS-box genes in the seed development and oil accumulation, which will contribute to the future molecular breeding of .
MaterniCode: New Bioinformatic Pipeline to Detect Fetal Aneuploidies and Rearrangements Using Next-Generation Sequencing
Gabrielli F, Papa FT, Di Pietro F, Paytuví-Gallart A, Julian D, Sanseverino W and Alfonsi C
The present study is aimed at introducing and evaluating MaterniCode, a state-of-the-art bioinformatic pipeline for noninvasive prenatal testing (NIPT) that leverages the Ion Torrent semiconductor sequencing platform. The initiative strives to revolutionize prenatal diagnostics by offering a rapid and cost-effective method without sacrificing accuracy. Two distinct bioinformatic strategies were employed for fetal sex determination, one of which achieved 100% accuracy. We analyzed 1225 maternal blood samples for fetal aneuploidies, benchmarking against the industry standard Illumina VeriSeq™ NIPT Solution v2. The capability of MaterniCode to detect and characterize complex chromosomal anomalies was also assessed. MaterniCode achieved near-perfect accuracy in fetal sex determination through chromosome Y (chrY )-specific gene analysis, whereas the alternative method, employing the ratio of high-quality mapped reads on chrY relative to all reads, delivered 100% accuracy. For fetal aneuploidy detection, both the integrated WisecondorX and NIPTeR algorithms demonstrated a 100% sensitivity and specificity rate, consistent with Illumina VeriSeq™ NIPT Solution v2. The pipeline also successfully identified and precisely mapped significant chromosomal abnormalities, exemplified by a 2.4 Mb deletion on chromosome 13 and a 3 Mb duplication on chromosome 2. MaterniCode has proven to be an innovative and highly efficient tool in the domain of NIPT, demonstrating excellent sensitivity and specificity. Its robust capability to effectively detect a wide range of complex chromosomal aberrations, including rare and subtle variations, positions it as a promising and valuable addition to prenatal diagnostic technologies. This enhancement to diagnostic precision significantly aids clinicians in making informed decisions during pregnancy management.
Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 3 Expression and Its Correlation with Prognosis and Growth of Serous Ovarian Cancer: Correlation of DYRK3 with Ovarian Cancer Survival
Sun J, Zhang Y, Li A and Yu H
Epithelial ovarian cancer, primarily serous ovarian cancer (SOC), stands as a predominant cause of cancer-related mortality among women globally, emphasizing the urgent need for comprehensive research into its molecular underpinnings. Within this context, the dual-specificity tyrosine phosphorylation-regulated kinase 3 (DYRK3) has emerged as a potential key player with implications for prognosis and tumor progression.
EIF2S1 Silencing Impedes Neuroblastoma Development Through GPX4 Inactivation and Ferroptosis Induction
Li Z, Wang Y, Liang S, Yuan T and Liu J
Neuroblastoma (NB) is one of the most devastating malignancies in children, accounting for a high mortality rate due to limited treatment options. This study is aimed at elucidating the role of the ferroptosis-related EIF2S1 gene in NB pathogenesis and exploring its potential as a therapeutic target. We conducted comprehensive bioinformatics analyses utilizing the FerrDb database and NB-related transcriptomics data to investigate the role of EIF2S1 in NB. Changes in EIF2S1 expression were subsequently validated in NB tissues and cell lines. Loss-of-function experiments were performed in SK-N-SH and IMR-32 cell lines through shRNA-mediated EIF2S1 knockdown. The impact of EIF2S1 knockdown on the tumorigenesis of SK-N-SH cells was assessed in nude mice. Bioinformatics analyses revealed a significant association between elevated EIF2S1 expression and poor prognosis in NB patients. The increased levels of EIF2S1 expression were confirmed in NB tissues and cancerous cell lines. Furthermore, EIF2S1 overexpression was linked to translational regulation and immune cell infiltration modulation. Silencing of EIF2S1 resulted in the suppression of cell proliferation, migration, and tumorigenicity in NB cells. Additionally, EIF2S1 knockdown led to an accumulation of iron and oxidative stress, as well as a reduction in GPX4 and SLC7A11 expression. Our findings indicate that EIF2S1 appears to facilitate the progression of NB by protecting tumor cells from ferroptosis through modulating GPX4 and SLC7A11 expression. Consequently, EIF2S1 may serve as a potential therapeutic target for the management of NB.
Ferroptosis-Related Genes in IgA Nephropathy: Screening for Potential Targets of the Mechanism
Zhu W, Chen Y, Xiao J, Cheng C, Ma G, Wang Y, Zhang Y and Chen M
Exploring key genes and potential molecular pathways of ferroptosis in immunoglobulin A nephropathy (IgAN). The IgAN datasets and ferroptosis-related genes (FRGs) were obtained in the Gene Expression Omnibus (GEO) and FerrDb database. Differentially expressed genes (DEGs) were identified using R software and intersected with FRGs to obtain differentially expressed FRGs (DE-FRGs). After that, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis (PEA) and Gene Ontology (GO) functional annotation were performed on DE-FRGs. In the Search Tool for the Retrieval of Interacting Genes (STRING) website, we construct a protein-protein interaction (PPI) network. The PPI network was further investigated with screening hub genes with Cytoscape software. The core genes were then subjected to gene set enrichment analysis (GSEA). Finally, the samples were analyzed for immune infiltration in R, and the correlation between hub genes and immune cells was analyzed. A total of 347 DEGs were identified. CD44, CDO1, CYBB, IL1B, RRM2, AKR1C1, activated transcription factor-3 (ATF3), CDKN1A, GDF15, JUN, MGST1, MIOX, MT1G, NR4A1, PDK4, TNFAIP3, and ZFP36 were determined as DE-FRGs. JUN, IL1B, and ATF3 were then screened as hub genes. GSEA and immune infiltration analysis revealed that the hub genes were closely associated with immune inflammatory responses such as NOD-like receptor signaling, IL-17 signaling, and TNF signaling. Our results show that JUN and ATF3 are possibly critical genes in the process of IgAN ferroptosis and may be related with immune cell infiltration.
A Chromosomal-Level Genome of , a Common Allergenic Mite Species
Hu R, Huang H, Zhou Y, Liu Y, Ren Y, Liao Y, Yuan C, Gu X and Cui Y
Genome data have been used to find novel allergen from house dust mites. Here, we aim to construct a chromosome-level genome assembly of , a common allergenic mite species.
Genome-Wide Characterization and Analysis of the Gene Family in
An L, Ma J, Fan C, Li H and Wu A
SQUAMOSA promoter-binding protein-like () gene family, a group of plant-specific transcription factors, played crucial roles in regulating plant growth, development, signal transduction, and stress response. This study focuses on the gene family in the fast-growing , employing bioinformatics approaches to identify and analyze the gene physiochemical characteristics, conserved domains, structural composition, chromosomal distribution, phylogenetic relationships, cis-acting elements, and their expression patterns in various tissues and stress treatments. Twenty-three genes were identified in , which uneven distributed across seven chromosomes and classified into five groups. Prediction of cis-acting elements revealed that these genes might be related to light, hormone, and stress responses. Furthermore, and , mainly expressed in the stem apex and lateral branches, seem to be involved in hormone stress resistance. Our study provides insights into the potential functions of the genes in plant growth, stress response, and hormone transduction, offering valuable perspectives for subsequent research into their biological roles.
Recurrent Inflammatory Myofibroblastic Tumor of Larynx Harboring a Novel THBS1::ALK Fusion
Ajmal N, Gargano SM, Gosavi U and Tuluc M
Inflammatory myofibroblastic tumor (IMT) is a rare soft tissue tumor primarily occurring in the abdominopelvic region of young patients, and it is characterized by spindle-shaped myofibroblasts, or fibroblasts surrounded by inflammatory infiltrate. Herein, we report a case of a 24-year-old male with a firm submucosal mass in the anterior right vocal fold diagnosed as an IMT that recurred 14 months later. The tumor demonstrated a novel THBS1::ALK fusion containing Exons 1-7 of the thrombospondin 1 () gene fused to Exon 19 of the anaplastic lymphoma kinase () gene via next-generation sequencing with the NextSeq sequencer. The fusion of to potentially results in increased expression and constitutive activation of the ALK kinase domain. These findings not only broaden the repertoire of known fusion partners implicated in tumorigenesis but also provide a novel avenue for investigating the etiology of recurrent IMT by considering this fusion event as a causal factor. To our knowledge, this is the second case of IMT of the larynx with this novel mutation reported in the literature and the first such case with a detailed description of this specific fusion and clinical recurrence.
CDC25B Is a Prognostic Biomarker Associated With Immune Infiltration and Drug Sensitivity in Hepatocellular Carcinoma
Huang Z, Xu L, Wu Z, Xiong X, Luo L and Wen Z
Cell division cycle 25B (CDC25B), a member of the CDC25 phosphatase family, plays a key role in cell cycle regulation. Studies have suggested its carcinogenic potential in various cancers, but the role of CDC25B in the development of hepatocellular carcinoma (HCC) remains poorly understood. The aim of this study was to clarify the role of CDC25B in HCC using bioinformatics and experiments. CDC25B expression data of HCC cancer tissues and paracancerous normal samples were obtained from The Cancer Gene Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and the relationship between CDC25B expression and the prognosis and degree of tumor differentiation of HCC patients was analyzed. CDC25B expression was verified in clinical HCC tissue samples using fluorescence quantitative polymerase chain reaction (q-PCR) and protein immunoblotting (Western blot). Gene set enrichment analysis (GSEA) was used to identify signaling pathways enriched in CDC25B expression, and differential genes (DEGs) were used to screen out coexpressed hub genes and construct protein-protein interaction (PPI) networks. 5-Ethynyl-2'-deoxyuridine (EDU) staining was used to compare the proliferation and differentiation ability of the HCC cell line (HCC-LM3) after knockdown of CDC25B. Finally, we investigated the mutation of CDC25B in HCC and the relationship between CDC25B expression and tumor cell infiltration of lymphocytes and some immune checkpoints as well as drug sensitivity. CDC25B was overexpressed in HCC tissues and correlated with poor prognosis and the degree of tumor differentiation in patients with HCC. The GSEA and PPI networks together revealed significantly upregulated signaling pathways, as well as functions, associated with the development of HCC when CDC25B was overexpressed. The EDU assay demonstrated that the ability of cells to differentiate value addedly was markedly reduced following the downregulation of CDC25B expression in HCC-LM3s. CDC25B was also involved in the formation of the tumor microenvironment (TME) and immune processes in HCC, and the high expression of CDC25B made patients less sensitive to some drugs. CDC25B can be used as a biomarker and immunotherapeutic target for poor prognosis and partial drug sensitivity in HCC, providing new ideas for HCC treatment.
Elevated SH3 and Multiple Ankyrin Repeat Domains 2 Expression Correlates With Improved Glioma Prognosis
Li W, Shi H and He J
This study investigates the prognostic significance of SH3 and multiple ankyrin repeat domains 2 (SHANK2) gene expression in glioma patients, using data from The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx) project, and the Gene Expression Omnibus (GEO). Through comprehensive analysis, we found a significant association between higher SHANK2 expression and improved survival outcomes across various glioma subtypes. To further validate the clinical relevance of SHANK2, we conducted cellular experiments involving siRNA-mediated knockdown of SHANK2 in U87 and A172 glioma cell lines. Quantitative real-time PCR (qPCR) and Western blot analyses confirmed the successful knockdown of SHANK2, and subsequent MTT assays revealed that silencing SHANK2 significantly promoted glioma cell proliferation. These findings underscore the potential role of SHANK2 as a tumor suppressor in glioma. The study also introduces a multivariate prognostic model incorporating SHANK2, providing a novel perspective on glioma prognosis. While the retrospective nature of the study presents limitations, our results suggest that SHANK2 expression could serve as a valuable biomarker for glioma prognosis and inform future therapeutic strategies.
M6A Modification and Transcription Analysis of LncRNA in Cerebral Ischemia/Reperfusion Injury
Mo J, Li Z, Yang Z, Huang Z, Guo P, Gao J, Xiao H, Ye P, Qin H, Zhou T and Jiang J
LncRNA is a major factor in the occurrence and development of many diseases. However, its mechanism in cerebral ischemia/reperfusion injury (CIRI) is yet unknown. In this study, the transcriptional level and methylation modification level of LncRNAs before and after mechanical thrombectomy were compared by high-throughput sequencing. Venn diagram, Spearman correlation analysis, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, TargetScan, and miRanda were used to analyze the experimental data. The results showed that four key LncRNAs changed at both transcription and methylation levels. Specifically, LncRNA FAR2, LINC02431, and AL357060.1 were downregulated and hypomethylated, while LncRNA FOXD2-AS1 was upregulated and hypomethylated. Moreover, positive regulation of angiogenesis, protein domain-specific binding, autophagy pathway, PPAR signaling pathway, and MAPK signaling pathway were co-enriched between LncRNAs with different expression levels and different methylation levels. Finally, a LncRNA-miRNA-mRNA network was constructed. Therefore, this study explored the potential key LncRNAs and regulatory mechanisms of CIRI.
Pancreatitis as a Main Consequence of -Related Hypertriglyceridemia: The Role of Nonsense and Frameshift Variants
Rabbani B, Moghadam MA, Esmaeili S, Rabbani A, Akbari B and Mahdieh N
related hypertriglyceridemia occurs due to biallelic variants of this gene. Here, genotype-phenotype architecture of all pathogenic variants is investigated among heterozygous and homozygous individuals. Clinical heterogeneity of various types of the variants is also described, and pancreatitis in more than half of homozygotes carrying chain-termination variants is highlighted as well. For this study, patients were selected who had a plasma triglyceride level above 250 mg/dL. The coding and intronic regions of the gene were amplified using the Sanger sequencing to investigate the presence of variants. The genotypes, lipid profiles, and detailed clinical features were documented for all -related patients and heterozygous individuals. Pathogenicity of the variants was predicted and categorized using available bioinformatics tools such as MutationTaster and PolyPhen-2 and ACMG criteria. MetaDome and Phyre2 were applied for structural and functional in silico analyses. 40% (12 out of 30) of variants were chain-termination (nonsense and frameshift) variants. These types of variants were determined in 60.53% of patients. 55% of these patients showed pancreatitis followed by lipemia retinalis (29%), abdominal pain (24%), hepatosplenomegaly (24%), and xanthomas (18%). The mean age of onset was about 22 years old. In at least 50% of 38 homozygous individuals, the TG level was more than 2000 mg/dL. More than 25% of heterozygous individuals showed at least one symptom. Pancreatitis and a severe form of HTG were found in 5 and 2% of heterozygous individuals, respectively. The main clinical features of -related hypertriglyceridemia include pancreatitis, lipemia retinalis, abdominal pain, hepatosplenomegaly, and xanthomas. Nonsense and frameshift homozygous variants usually lead to a severe form of hypertriglyceridemia. Pancreatitis is one of the main consequences of these types of mutations; thus, it is important to consider this point when evaluating asymptomatic individuals. Heterozygous individuals may become symptomatic due to the role of unknown modifying agent including environmental genetic factors.
SKF96365 Inhibits Tumor Proliferation by Inducing Apoptosis and Autophagy in Human Esophageal Squamous Cell Carcinoma
Zhang J, Han H, Liu Y, Xu J, Zhang D, Wang W, Gao Y, Li Z and Qin Y
Calcium channel blockers are emerging as a new generation of attractive anticancer drugs. SKF96365, originally thought to be a store-operated calcium entry (SOCE) inhibitor, is now often used as a TRPC channel blocker and is widely used in medical diagnostics. SKF96365 has shown antitumor effects on a variety of cancer cell lines. The objective of this study was to investigate the anticancer effect of SKF96365 on esophageal cancer in vivo and in vitro. Cell Counting Kit-8 (CCK-8) and colony formation were used to test the proliferation inhibition of SKF96365 on cell lines. Western blot and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were used to detect cell apoptosis rates. In addition, we demonstrated the antitumor effect of SKF96365 in vivo in xenografted mice. As a result, SKF96365 significantly inhibited the proliferation of K510, K30, and EC9706 in vitro. SKF96365 induces apoptosis in three cell lines through the poly(adenosine diphosphate-ribose) polymerase (PARP), caspase-9, and BCL-2 pathways in a dose-dependent and time-dependent manner. Moreover, SKF96365 treatment also induced apoptosis and inhibited tumor growth in nude mice. The calcium channel TRPC1 was significantly downregulated by SKF96365. Autophagy was also induced during the treatment of SKF96365. In summary, SKF96365 induces apoptosis (PARP, caspase-9, and BCL-2) and autophagy (LC3-A/B) by inhibiting TRPC1 in esophageal cancer cells, thereby inhibiting tumor growth.
A Gene Regulates Pod Dehiscence in Soybean
Wang Z, Zhang X, Hou R, Zhang H, Guo X, Ma X, Xu A, Zhu H and Li S
Pod dehiscence brings much loss for modern agricultural production, and multiple pod dehiscence components have been identified in many plant species. However, the pod dehiscence regulation factors in soybean are limited. In this study, we investigate the function of , a close homologues gene of pod dehiscence genes , , and , in the regulation of pod dehiscence in soybean. The secondary and tertiary structure analysis reveals that GmDIR26 protein has a similar structure with GmPdh1, PvPdh1, and CaPdh1 proteins. Synteny analysis of soybean and chickpea genomes shows that the genomic region surrounding and might be evolved from the same ancestor, and these two genes might have similar function. shows an increased expression pattern during pod development and reaches a peak at beginning seed stage. Meanwhile, exhibits high expression levels in dorsal suture and pod wall, but low expression pattern in ventral suture. In addition, shows higher expression levels in pod dehiscence genotype than that in pod indehiscence accessions. Overexpression of in soybean increases pod dehiscence in transgenic plants, of which the lignin layer in inner sclerenchyma pods is thicker and looser. The expression levels of several pod dehiscence genes are altered. Our study provides important information for further modification of pod dehiscence resistance soybean and characterization of soybean pod dehiscence regulation network.
Discovery of a Novel Shared Variant Among Gene and lncRNA at Chromosome 20q13.33 in Familial Progressive Myoclonus Epilepsy
Chaudhari S, Acharya LP, Jasti DB, Ware AP, Gorthi SP and Satyamoorthy K
Progressive myoclonus epilepsy (PME) is a neurodegenerative disorder marked by recurrent seizures and progressive myoclonus. To date, based on the phenotypes and causal genes, more than 40 subtypes of PMEs have been identified, and more remain to be characterized. Our study is aimed at identifying the aberrant gene(s) possibly associated with PMEs in two siblings born to asymptomatic parents, in the absence of known genetic mutations. Clinical assessments and molecular analyses, such as the repeat expansion test for ; SCA1, 2, 3, 6, and 7; whole exome sequencing (WES); and mitochondrial genome sequencing coupled with computational analysis, were performed. A family-based segregation analysis of WES data was performed to identify novel genes associated with PMEs. The potassium channel, [c.298T>C; (p.Tyr100His)], a DNA repair gene, regulator of telomere elongation helicase 1 () [c.691G>T; (p.Asp231Tyr)] and long noncoding RNA, [chr20:62298898_G>T; NR_037882.1, hg19] were among the candidate genes that were found to be associated with PMEs. These homozygous variations in siblings belong to genes with a loss-of-function intolerant (pLI) score of ≤ 0.86, expected to be detrimental by multiple computational analyses, and were heterozygous in parents. Additionally, computational analysis and the expression of and revealed that may modulate via hsa-miR-3529-3p. In the patient with the severe phenotype, a further deleterious mutation in was identified. No de novo variants specific to these probands were identified in the mitochondrial genome. Our study is the first to report variants in , , and among PME cases. These genes when characterized fully may shed light on pathogenicity and have the potential to be used in the diagnosis of PME.
Complete Genome Sequence Analysis of MC4-2 Strain That against Tobacco Black Shank Disease
Shi C, Zeng S, Gao X, Hussain M, He M, Niu X, Wei C, Yang R, Lan M, Xie Y, Wang Z, Wu G and Tang P
The MC4-2 bacterium strain was isolated and purified from the intestine as a biocontrol agent with good antagonistic effect against the pathogens of a soil-borne disease called tobacco black shank. The MC4-2 strain was found to have good broad-spectrum inhibition by plate stand-off test. Based on 16S rRNA and genes, ANI analysis, and other comparative genomics methods, it was determined that the MC4-2 strain was . The complete genome sequence showed that the genome size was 4,076,630 bp, the average GC content was 43.78%, and the total number of CDSs was 4,207. Genomic prediction analysis revealed that a total of 145 genes were annotated by the CAZy, containing mainly GH and CE enzymes that break down carbohydrates such as glucose, chitin, starch, and alginate, and a large number of enzymes involved in glycosylation were present. A total of ten secondary metabolite clusters were predicted, six clusters of which were annotated as surfactin, bacillaene, fengycin, bacillibactin, subtilosin A, and bacilysin. The present investigation found the biological control mechanism of MC4-2, which provides a strong theoretical basis for the best use of this strain in biological control methods and provides a reference for the subsequent development of agents of this bacterium.
as a Novel Urinary Tract Pathogen in Daloa, Côte d'Ivoire: Insights From Genomic Sequencing
Gbégbé DA, Kacou OBC, N'zi NP and Angaman DM
Bacterial strains coded 21LM367, 21LM07, and 21LM1136 were isolated from the urine of patients with urinary tract infections (UTIs) at the Centre Hospitalier Régional de Daloa in Côte d'Ivoire. Based on average nucleotide identity (ANI) analysis, DNA-DNA digital hybridisation (dDDH), and other comparative genomic methods, strains 21LM07, 21LM367, and 21LM1136 were determined to be . The size of the assembled complete genomes ranged from 8,624,538 to 4,007,501 bp. The average GC content was 37.76%, 46.33%, and 43.03% for strains 21LM07, 21LM367, and 21LM1136, respectively. The total number of coding regions (CDS) in each genome was 4172, 8497, and 6795, respectively, for strains 21LM07, 21LM367, and 21LM1136. Genomic prediction analysis revealed that a total of 4241, 8583, and 6881 genes were annotated in the 21LM07, 21LM367, and 21LM1136 genomes, respectively. No virulence or resistance genes were predicted in the genomes of strains 21LM07 and 21LM1136. On the other hand, two genes conferring resistance to beta-lactam and tetracyclines as well as nine virulence genes were predicted in the genome of 21LM367. In addition, 438, 350, and 153 mobile genetic elements (MGEs) were predicted in the genomes of strains 21LM367, 21LM1136, and 21LM07, respectively. Strain 21LM07 was characterised by the absence of plasmids in its genome. Two plasmids were predicted in the genomes of isolates 21LM367 and 21LM1136; however, rep7a and IncI2 were predicted to contain the tet(K) resistance gene. No typical multilocus sequences could be characterised in the genomes of the different strains.
Pangenome Analysis of Isolates from Selected Areas of Africa Indicated Diverse Antibiotic Resistance and Virulence Genes
Yakubu B, Appiah EM and Adu AF
The challenge facing Helicobacter pylori (H. pylori) infection management in some parts of Africa is the evolution of drug-resistant species, the lack of gold standard in diagnostic methods, and the ineffectiveness of current vaccines against the bacteria. It is being established that even though clinical consequences linked to the bacteria vary geographically, there is rather a generic approach to treatment. This situation has remained problematic in the successful fight against the bacteria in parts of Africa. As a result, this study compared the genomes of selected H. pylori isolates from selected areas of Africa and evaluated their virulence and antibiotic drug resistance, those that are highly pathogenic and are associated with specific clinical outcomes and those that are less virulent and rarely associated with clinical outcomes. 146 genomes of H. pylori isolated from selected locations of Africa were sampled, and bioinformatic tools such as Abricate, CARD RGI, MLST, Prokka, Roary, Phandango, Google Sheets, and iTOLS were used to compare the isolates and their antibiotic resistance or susceptibility. Over 20 k virulence and AMR genes were observed. About 95% of the isolates were genetically diverse, 90% of the isolates harbored shell genes, and 50% harbored cloud and core genes. Some isolates did not retain the cagA and vacA genes. Clarithromycin, metronidazole, amoxicillin, and tinidazole were resistant to most AMR genes (vacA, cagA, oip, and bab). . This study found both virulence and AMR genes in all H. pylori strains in all the selected geographies around Africa with differing quantities. MLST, Pangenome, and ORF analyses showed disparities among the isolates. This in general could imply diversities in terms of genetics, evolution, and protein production. Therefore, generic administration of antibiotics such as clarithromycin, amoxicillin, and erythromycin as treatment methods in the African subregion could be contributing to the spread of the bacterium's antibiotic resistance.
Genome-Wide Association Study for Test-Day Milk Yield, Proteins, and Composition Traits of Crossbred Dairy Cattle in Ethiopia
Rekik B, Mestawet T, Girma A, Seid M, Besufekad J and Meseret S
Identifying genetic regions and candidate genes that influence milk production traits is critical for understanding genetic inheritance and improving both the quality and quantity of milk in dairy cattle. Crossbred dairy cattle significantly contribute to increasing milk production and ensuring food security in the middle- and high-altitude regions of Ethiopia. However, the genetic architecture underlying their milk yield and composition traits has not yet been thoroughly investigated. This study conducted a genome-wide association study (GWAS) on 308 crossbred dairy cows from central, northeastern, and southern Ethiopia to identify genetic markers associated with key milk production traits. Using high-density SNP chip data and the fixed and random model circulating probability unification (Farm CPU) method via the Memory-efficient, Visualization-enhanced, and Parallel-accelerated R package (rMVP) (Version 1.0.7.), we analyzed traits including test-day milk yield (TDMY), total protein (TP), casein (CN), whey (W), protein percentage (P), fat percentage (F), lactose percentage (L), total solids (TS), density (D), solids-not-fat (SNF), salt (S), and freezing point (FP). This study identified 16 significant SNPs associated with these traits, including rs41661899 on Chromosome 6, which was significantly associated with both TP and W, and rs42274954 on Chromosome 12, which was significantly associated with CN. Eight SNPs, such as rs43560693, rs109098713, rs111029661, rs134499665, rs133908307, rs133627532, rs42098411, and rs110066280, were found across multiple chromosomes (8, 10, 14, 15, 19, 21, 26, and 28, respectively) and were significantly associated with milk P. Additionally, SNPs rs110844447 and rs135995768 on Chromosomes 6 and 14 were significantly associated with D and FP, respectively. Three SNPs, including rs109564259, rs135552551, and rs41620904 on Chromosomes 6, 11, and 24, were significant associations with S. Candidate genes identified near and within these SNPs include TRAM1L1, DIAPH3, PEBP4, WDR89, BCAS3, RALGAPA1, HABP2, NRG3, HPSE, PCDH7, LINC02579, TRNAS-GGA, and OR5CN1P. These findings enhance our understanding of the genetic architecture of milk-related traits in Ethiopian dairy cattle and highlight the potential for marker-assisted selection to improve milk production and composition in breeding programs.