Swiss Journal of Geosciences

Structural and thermal evolution of the eastern Aar Massif: insights from structural field work and Raman thermometry
Nibourel L, Berger A, Egli D, Heuberger S and Herwegh M
The thermo-kinematic evolution of the eastern Aar Massif, Swiss Alps, was investigated using peak temperature data estimated from Raman spectroscopy of carbonaceous material and detailed field analyses. New and compiled temperature-time constraints along the deformed and exhumed basement-cover contact allow us to (i) establish the timing of metamorphism and deformation, (ii) track long-term horizontal and vertical orogenic movements and (iii) assess the influence of temperature and structural inheritance on the kinematic evolution. We present a new shear zone map, structural cross sections and a step-wise retrodeformation. From onwards, basement-involved deformation started with the formation of relatively discrete NNW-directed thrusts. Peak metamorphic isograds are weakly deformed by these thrusts, suggesting that they initiated before or during the metamorphic peak under ongoing burial in the footwall to the basal Helvetic roof thrust. Subsequent peak- to post-metamorphic deformation was dominated by steep, mostly NNW-vergent reverse faults (  22-14 Ma). Field investigations demonstrate that these shear zones were steeper than already at inception. This produced the massif-internal structural relief and was associated with large vertical displacements (7 km shortening vs. up to 11 km exhumation). From 14 Ma onwards, the eastern Aar massif exhumed "en bloc" (i.e., without significant differential massif-internal exhumation) in the hanging wall of frontal thrusts, which is consistent with the transition to strike-slip dominated deformation observed within the massif. Our results indicate 13 km shortening and 9 km exhumation between 14 Ma and present. Inherited normal faults were not significantly reactivated. Instead, new thrusts/reverse faults developed in the basement below syn-rift basins, and can be traced into overturned fold limbs in the overlying sediment, producing tight synclines and broad anticlines along the basement-cover contact. The sediments were not detached from their crystalline substratum and formed disharmonic folds. Our results highlight decreasing rheological contrasts between (i) relatively strong basement and (ii) relatively weak cover units and inherited faults at higher temperature conditions. Both the timing of basement-involved deformation and the structural style (shear zone dip) appear to be controlled by evolving temperature conditions.
The evolution of the Sesia Zone (Western Alps) from Carboniferous to Cretaceous: insights from zircon and allanite geochronology
Vho A, Rubatto D, Lanari P and Regis D
Microscale dating of distinct domains in minerals that contain relics of multiple metamorphic events is a key tool to characterize the polyphase evolution of complex metamorphic terranes. Zircon and allanite from five metasediments and five metaintrusive high-pressure (HP) rocks from the Eclogite Micaschist Complex of the Sesia Zone were dated by SIMS and LA-ICP-MS. In the metasediments, zircon systematically preserves detrital cores and one or two metamorphic overgrowths. An early Permian age is obtained for the first zircon rim in metasediments from the localities of Malone Valley, Chiusella Valley and Monte Mucrone (292 ± 11, 278.8 ± 3.6 and 285.9 ± 2.9 Ma, respectively). In the Malone Valley and Monte Mucrone samples, the early Permian ages are attributed to high-temperature metamorphism and coincide with the crystallization ages of associated mafic and felsic intrusions. This implies that magmatism and metamorphism were coeval and associated to the same tectono-metamorphic extensional event. In the Malone Valley, allanite from a metasediment is dated at 241.1 ± 6.1 Ma and this age is tentatively attributed to a metasomatic/metamorphic event during Permo-Triassic extension. Outer zircon rims with a late Cretaceous age (67.4 ± 1.9 Ma) are found only in the micaschist from Monte Mucrone. In metagabbro of the Ivozio Complex, zircon cores yield an intrusive age for the protolith of 340.7 ± 6.8 Ma, whereas Alpine allanite are dated at 62.9 ± 4.2 and 55.3 ± 7.3 Ma. The Cretaceous ages constrain the timing of the HP metamorphic stage. The presence of zircon overgrowth only in the central area of the Eclogite Micaschist Complex is attributed to local factors such as (1) multiple fluid pulses at HP that locally enhanced zircon dissolution and recrystallization, and (2) slightly higher temperatures reached in this area during HP metamorphism.
New insights on the Early Cretaceous (Hauterivian-Barremian) Urgonian lithostratigraphic units in the Jura Mountains (France and Switzerland): the Gorges de l'Orbe and the Rocher des Hirondelles formations
Pictet A
The Hauterivian-Barremian series of the Jura Mountains were measured over more than 60 sections along a 200 km long transect between Aix-les-Bains (Savoie Department, France) and Bienne (Bern Canton, Switzerland), which prompted the need for a revision and improvement of the current lithostratigraphic scheme for this stratigraphic interval. A new formation, the Rocher des Hirondelles Formation, is proposed in replacement of the unsuitable Vallorbe Formation, while the Gorges de l'Orbe Formation is formally described. The Gorges de l'Orbe Formation, equivalent to the well-known "Urgonien jaune" facies, consists of two members, namely Montcherand Member and Bôle Member. The Rocher des Hirondelles Formation, equivalent to the "Urgonien blanc" facies, consists of three members, i.e. Fort de l'Écluse Member, Rivière Member and Vallorbe Member. The marly Rivière and Bôle members appear to present time-equivalent lithostratigraphic units, recording a major sedimentological event affecting contemporarily both formations. This study proposes a new sedimentary model opening a new point of view on the long-living controversies about the age of the Urgonian series from the Jura Mountains. The data point to strong diachronic ages of lithostratigraphic units with a late Hauterivian to early Barremian occurrence of the "Urgonian blanc" facies in the Meridional Jura area versus a latest Barremian age in the Central Jura area, reflecting a general progradation of the Urgonian shallow-water carbonate platform from the present-day Meridional Jura area toward external deeper-water shelf environments of the present-day Central Jura area and Molasse basin.
Episodes of fissure formation in the Alps: connecting quartz fluid inclusion, fissure monazite age, and fissure orientation data
Gnos E, Mullis J, Ricchi E, Bergemann CA, Janots E and Berger A
Fluid assisted Alpine fissure-vein and cleft formation starts at prograde, peak or retrograde metamorphic conditions of 450-550 °C and 0.3-0.6 GPa and below, commonly at conditions of ductile to brittle rock deformation. Early-formed fissures become overprinted by subsequent deformation, locally leading to a reorientation. Deformation that follows fissure formation initiates a cycle of dissolution, dissolution/reprecipitation or new growth of fissure minerals enclosing fluid inclusions. Although fissures in upper greenschist and amphibolite facies rocks predominantly form under retrograde metamorphic conditions, this work confirms that the carbon dioxide fluid zone correlates with regions of highest grade Alpine metamorphism, suggesting carbon dioxide production by prograde devolatilization reactions and rock-buffering of the fissure-filling fluid. For this reason, fluid composition zones systematically change in metamorphosed and exhumed nappe stacks from diagenetic to amphibolite facies metamorphic rocks from saline fluids dominated by higher hydrocarbons, methane, water and carbon dioxide. Open fissures are in most cases oriented roughly perpendicular to the foliation and lineation of the host rock. The type of fluid constrains the habit of the very frequently crystallizing quartz crystals. Open fissures also form in association with more localized strike-slip faults and are oriented perpendicular to the faults. The combination of fissure orientation, fissure quartz fluid inclusion and fissure monazite-(Ce) (hereafter monazite) Th-Pb ages shows that fissure formation occurred episodically (1) during the Cretaceous (eo-Alpine) deformation cycle in association with exhumation of the Austroalpine Koralpe-Saualpe region (~ 90 Ma) and subsequent extensional movements in association with the formation of the Gosau basins (~ 90-70 Ma), (2) during rapid exhumation of high-pressure overprinted Briançonnais and Piemontais units (36-30 Ma), (3) during unroofing of the Tauern and Lepontine metamorphic domes, during emplacement and reverse faulting of the external Massifs (25-12 Ma; except Argentera) and due to local dextral strike-slip faulting in association with the opening of the Ligurian sea, and (4) during the development of a young, widespread network of ductile to brittle strike-slip faults (12-5 Ma).
A rapid transition from subduction to Barrovian metamorphism: geochronology of mafic-ultramafic relicts of oceanic crust in the Central Alps, Switzerland
Lemke K, Rubatto D and Hermann J
Relicts of subducted oceanic lithosphere provide key information for the tectonic reconstructions of convergent margins. In the Central Alps, such relicts occur as isolated mafic-ultramafic lenses within the migmatites of the southern Adula nappe and Cima-Lunga unit. Analysis of the major-, minor-, and accessory minerals of these ophiolitic relicts, combined with zircon and rutile U-Pb ages and zircon oxygen isotopes, allows the reconstruction of different stages of their complex evolution. The mafic-ultramafic suite in Valle di Moleno consists of chlorite-harzburgites associated with metarodingites and retrogressed eclogites. Relic omphacite and kyanite in retrogressed eclogites provide evidence for subduction-related metamorphism. Increasing X in the garnet mantle towards the rim documents heating during high-pressure metamorphism up to 800-850 °C. Polyphase inclusions and chemical zoning in garnet suggest fluid-assisted melting during high-pressure metamorphism dated at 31.0 ± 0.9 Ma. In Val Cama, chlorite-harzburgites, metarodingites and calcsilicate-metasediments occur. Detrital zircon ages in the metasediment suggest a Mesozoic deposition. The metarodingite-metaperidotite-metasediment association and the low δO signatures of zircon (δO 3.0-3.7‰), inherited from seafloor metasomatism of the protoliths, show that the rocks are derived from former altered oceanic crust. Amphibolite facies metamorphism related to the Central Alps Barrovian evolution in Val Cama occurred at 28.8 ± 1.5 Ma. The combined data from Moleno and Cama indicate a rapid transition (~ 2 Ma) from subduction to collisional metamorphism with corresponding exhumation rates of 3-6 cm/year. Fast exhumation tectonics may have been favored by slab break-off or slab extraction. U-Pb dating of rutile from both localities yields ages of ~ 20 Ma, suggesting that these rocks remained at amphibolite-facies conditions for about 10 Ma and underwent a second fast exhumation of 3 cm/year associated with vertical movements along the Insubric line.
Alpine peak pressure and tectono-metamorphic history of the Monte Rosa nappe: evidence from the cirque du Véraz, upper Ayas valley, Italy
Vaughan-Hammon JD, Luisier C, Baumgartner LP and Schmalholz SM
The Monte Rosa nappe consists of a wide range of lithologies that record conditions associated with peak Alpine metamorphism. While peak temperature conditions inferred from previous studies largely agree, variable peak pressures have been estimated for the Alpine high-pressure metamorphic event. Small volumes of whiteschist lithologies with the assemblage chloritoid + phengite + talc + quartz record peak pressures up to 0.6 GPa higher compared to associated metapelitic and metagranitic lithologies, which yield a peak pressure of ca. 1.6 GPa. The reason for this pressure difference is disputed, and proposed explanations include tectonic mixing of rocks from different burial depths (mélange) or local deviations of the pressure from the lithostatic value caused by heterogeneous stress conditions between rocks of contrasting mechanical properties. We present results of detailed field mapping, structural analysis and a new geological map for a part of the Monte Rosa nappe exposed at the cirque du Véraz field area (head of the Ayas valley, Italy). Results of the geological mapping and structural analysis shows the structural coherency within the western portions of the Monte Rosa nappe. This structural coherency falsifies the hypothesis of a tectonic mélange as reason for peak pressure variations. Structural analysis indicates two major Alpine deformation events, in agreement with earlier studies: (1) north-directed nappe emplacement, and (2) south-directed backfolding. We also analyze a newly discovered whiteschist body, which is located at the intrusive contact between Monte Rosa metagranite and surrounding metapelites. This location is different to previous whiteschist occurrences, which were entirely embedded within metagranite. Thermodynamic calculations using metamorphic assemblage diagrams resulted in 2.1 ± 0.2 GPa and 560 ± 20 °C for peak Alpine metamorphic conditions. These results agree with metamorphic conditions inferred for previously investigated nearby whiteschist outcrops embedded in metagranite. The new results, hence, confirm the peak pressure differences between whiteschists and the metagranite and metapelite. To better constrain the prograde pressure-temperature history of the whiteschist, we compare measured Mg zoning in chloritoid with Mg zoning predicted by fractional crystallization pseudo-section modelling for several hypothetical pressure-temperature paths. In order to reach a ca. 0.6 GPa higher peak pressure compared to the metapelite and metagranite, our results suggest that the whiteschist likely deviated from the prograde burial path recorded in metapelite and metagranite lithologies. However, the exact conditions at which the whiteschist pressure deviated are still contentious due to the strong temperature dependency of Mg partitioning in whiteschist assemblages. Our pseudo-section results suggest at least that there was no dramatic isothermal pressure increase recorded in the whiteschist.
Traces of a prehistoric and potentially tsunamigenic mass movement in the sediments of Lake Thun (Switzerland)
Kremer K, Fabbri SC, Evers FM, Schweizer N and Wirth SB
Mass movements constitute major natural hazards in the Alpine realm. When triggered on slopes adjacent to lakes, these mass movements can generate tsunami-like waves that may cause additional damage along the shore. For hazard assessment, knowledge about the occurrence, the trigger and the geomechanical and hydrogeological mechanisms of these mass movements is necessary. For reconstructing mass movements that occurred in or adjacent to lakes, the lakes's sedimentary record can be used as an archive. Here, we present a prehistorical mass-movement event, of which the traces were found in an alpine lake, Lake Thun, in central Switzerland. The mass movement is identified by large blocks on the bathymetric map, a chaotic to transparent facies on the reflection seismic profiles, and by a mixture of deformed lake sediments and sandy organic-rich layers in the sediment-core record. The event is dated at 2642-2407 cal year BP. With an estimated volume of ~ 20 × 10 m it might have generated a wave with an initial amplitude of > 30 m. In addition to this prehistorical event, two younger deposits were identified in the sedimentary record. One could be dated at 1523-1361 cal year BP and thus can be potentially related to an event in 598/599 AD documented in historical reports. The youngest deposit is dated at 304-151 cal year BP (1646-1799 AD) and is interpreted to be related to the artificial Kander river deviation into Lake Thun (1714 AD).
Greater Alpine river network evolution, interpretations based on novel drainage analysis
Winterberg S and Willett SD
The Central European drainage system is dominated by four major rivers (the Danube, Rhine, Rhône and Po). The geometry of these drainage basins has evolved through the history of Alpine and Carpathian orogeny. Analysis of the modern river geometry reveals the geometric stability or instability of the drainage network and enables interpretation of the erosion and exhumation pattern. We characterize the river basin geometry and inter-basin relief through metrics including the quantity χ that relates to the catchment area, and a catchment restricted minimum elevation (CRM) metric. The interpretations from the maps are in agreement with known river captures and morphological features. The χ-map reveals additional systematic, large-scale transients, consistent with ongoing basin changes, mainly manifesting in the Danube losing catchment area. We postulate that the changes are related to the longitudinal initiation of the Danube River in the Alpine foreland, augmented by the formation of the Carpathians and the filling of the Pannonian Basin, which resulted in an elongation of the Danube river basin. We conclude that the Danube has lacked erosional power throughout its history and therefore been victim to capture and area loss.
Marine facies differentiation along complex paleotopography: an example from the Middle Miocene (Serravallian) of Lower Austria
Piller WE, Auer G, Graber H and Gross M
In the area of Bad Deutsch-Altenburg (Hainburg Mountains, Lower Austria) a Middle Miocene transgression over Mesozoic basement was explored in the course of the Danube power plant project "Hainburg". The Mesozoic basement forms a narrow ridge dipping to the northeast towards the Vienna Basin, covered by various Miocene sediments. The ridge represents a specific paleotopography that required a detailed study with 78 shallow, fully cored drill holes in an area of c. 0.5 km. Ten drillings were selected for this study based on sedimentary composition and position relative to the Mesozoic ridge. These 10 cores, ranging in drilling depth from 26.5 to 96.4 m, were studied in respect to sedimentology, corallinacean algae, calcareous nannoplankton, foraminifers and ostracodes to reconstruct sediment distribution and paleoenvironment. Sediment distribution clearly shows that the Mesozoic ridge formed a physical barrier with siliciclastics dominating in the SW of the ridge and carbonate sediments prevailing in the NE. Based on biostratigraphy (calcareous nannoplankton, foraminifera, ostracodes, dinoflagellates) the majority of the sediments can be dated to the late Badenian (early Serravallian) only in some drillholes lower Sarmatian (upper Serravallian) sediments were detected. In terms of sequence stratigraphy, the Badenian sediments represent the transgressive and highstand systems tract of 3 order sequence TB 2.5 (bound by the lowstands Ser 2 and Ser 3), the lower Sarmatian sediments can be correlated to sequence TB 2.6. Carbonate sediments show a wide spectrum of 13 facies which are mostly dominated by coralline algae. According to the relative positions of the drill holes a water depth between 0 and about 50 m can be reconstructed what is supported by the occurrence of the benthic biota. This biota indicates that the sedimentary succession started from the very beginning under full marine conditions. Except of basal conglomerates/breccias water energy conditions were low and turbidity high. Close to the Sarmatian boundary a reduction in salinity and depth may have occurred which is also observed in the Sarmatian sediments. Carbonate sediments and, in particular, larger benthic foraminifers indicate tropical to warm-temperate conditions for the late Badenian of the studied sections. The siliciclastic sediments NW of the Mesozoic ridge reflect riverine input indicated by the occurrence of freshwater ostracodes and characean oogonias. Calcareous nannoplankton and dinoflagellates show a high share of reworking from Upper Cretaceaous and Paleogene sediments.
A gravimetric assessment of the Gotthard Base Tunnel geological model: insights from a novel gravity terrain-adaptation correction and rock physics data
Scarponi M, Hetényi G, Baron L and Marti U
The Gotthard Base Tunnel (GBT) is a 57 km long railway tunnel, constructed in the Central Alps in Switzerland and extending mainly North-South across numerous geological units. We acquired 80 new gravity data points at the surface along the GBT profile and used 77 gravity measurements in the tunnel to test and constrain the shallow crustal, km-scale geological model established during the tunnel construction. To this end, we developed a novel processing scheme, which computes a fully 3D, density-dependent gravity terrain-adaptation correction (TAC), to consistently compare the gravity observations with the 2D geological model structure; the latter converted into a density model. This approach allowed to explore and quantify candidate rock density distributions along the GBT modelled profile in a computationally-efficient manner, and to test whether a reasonable fit can be found without structural modification of the geological model. The tested density data for the various lithologies were compiled from the SAPHYR rock physical property database. The tested models were evaluated both in terms of misfit between observed and synthetic gravity data, and also in terms of correlation between misfit trend and topography of the target profile. The results indicate that the locally sampled densities provide a better fit to the data for the considered lithologies, rather than density data averaged over a wider set of Alpine rock samples for the same lithology. Furthermore, using one homogeneous and constant density value for all the topographic corrections does not provide an optimal fit to the data, which instead confirms density variations along the profile. Structurally, a satisfactory fit could be found without modifying the 2D geological model, which thus can be considered gravimetry-proof. From a more general perspective, the gravity data processing routines and the density-dependent corrections developed in this case study represent a remarkable potential for further high-resolution gravity investigations of geological structures.
Overdeepenings in the Swiss plateau: U-shaped geometries underlain by inner gorges
Bandou D, Schlunegger F, Kissling E, Marti U, Reber R and Pfander J
We investigated the mechanisms leading to the formation of tunnel valleys in the Swiss foreland near Bern. We proceeded through producing 3D maps of the bedrock topography based on drillhole information and a new gravimetric survey combined with modelling. In this context, the combination of information about the densities of the sedimentary fill and of the bedrock, together with published borehole data and the results of gravity surveys along 11 profiles across the valleys, served as input for the application of our 3D gravity modelling software referred to as PRISMA. This ultimately allowed us to model the gravity effect of the Quaternary fill of the overdeepenings and to produce cross-sectional geometries of these troughs. The results show that 2-3 km upstream of the city of Bern, the overdeepenings are approximately 3 km wide. They are characterized by steep to oversteepened lateral flanks and a wide flat base, which we consider as a U-shaped cross-sectional geometry. There, the maximum residual gravity anomaly ranges between - 3 to - 4 mGal for the Aare valley, which is the main overdeepening of the region. Modelling shows that this corresponds to a depression, which reaches a depth of c. 300 m a.s.l. Farther downstream approaching Bern, the erosional trough narrows by c. 1 km, and the base gets shallower by c. 100 m as revealed by drillings. This is supported by the results of our gravity surveys, which disclose a lower maximum gravity effect of c. - 0.8 to - 1.3 mGal. Interestingly, in the Bern city area, these shallow troughs with maximum gravity anomalies ranging from - 1.4 to - 1.8 mGal are underlain by one or multiple inner gorges, which are at least 100 m deep (based on drilling information) and only a few tens of meters wide (disclosed by gravity modelling). At the downstream end of the Bern area, we observe that the trough widens from 2 km at the northern border of Bern to c. 4 km approximately 2 km farther downstream, while the bottom still reaches c. 300 to 200 m a.s.l. Our gravity survey implies that this change is associated with an increase in the maximum residual anomaly, reaching values of - 2.5 mGal. Interestingly, the overdeepening's cross-sectional geometry in this area has steeply dipping flanks converging to a narrow base, which we consider as V-shaped. We attribute this shape to erosion by water either underneath or at the snout of a glacier, forming a gorge. This narrow bedrock depression was subsequently widened by glacial carving. In this context, strong glacial erosion upstream of the Bern area appears to have overprinted these traces. In contrast, beneath the city of Bern and farther downstream these V-shaped features have been preserved. Available chronological data suggest that the formation of this gorge occurred prior to MIS 8 and possibly during the aftermath of one of the largest glaciations when large fluxes of meltwater resulted in the fluvial carving into the bedrock.
Tectonic architecture of the northern Dora-Maira Massif (Western Alps, Italy): field and geochronological data
Nosenzo F, Manzotti P, Krona M, Ballèvre M and Poujol M
High-pressure and ultra-high-pressure metamorphic terrains display an internal architecture consisting of a pile (or stack) of several coherent tectonic thrust sheets or units. Their identification is fundamental for understanding the scale and mechanisms active during subduction and exhumation of these crustal slices. This study investigates the geometry of the northern Dora-Maira Massif and the kinematics of the major tectonic boundaries, combining field and geochronological data. The tectonic stack of the northern Dora-Maira Massif comprises the following units. The lowermost unit (the Pinerolo Unit) is mainly characterized by Upper Carboniferous fluvio-lacustrine (meta-)sediments. The Pinerolo unit is overthrust by a pre-Carboniferous basement. The latter is subdivided in two tectonic units (the Chasteiran and Muret Units) with different Alpine metamorphism (ultra-high-pressure and high-pressure, respectively). The pre-Carboniferous basement of the Muret Unit is thicker than previously thought for two main reasons. Firstly, some paragneisses, traditionally assumed to be Carboniferous and/or Permian in age, display detrital zircon ages indicating a main source at about 600 Ma. Secondly, three samples of the Granero Orthogneiss, previously assumed to be a Permian intrusive body, have provided zircon U-Pb ages of 447 ± 1 Ma, 456 ± 2 Ma and 440 ± 2 Ma, indicating a late Ordovician or early Silurian age for the protoliths. The uppermost unit (the Serre Unit) comprises porphyritic (meta-) volcanic and volcaniclastic rocks dated to the Permian (271 ± 2 Ma), on top of which remnants of the Mesozoic cover is preserved. Detailed mapping of an area about 140 km shows that (i) the ultra-high pressure Chasteiran Unit is localized at the boundary between the Pinerolo and Muret Units, (ii) the Granero Orthogneiss may be considered as the mylonitic sole of the Muret Unit, characterized by a top-to-W sense of shear, and (iii) the contact between the Muret and Serre Units displays ductile-to brittle structures (La Fracho Shear Zone), indicating a top-to-the-NW displacement of the hangingwall with respect to the footwall. A final episode of brittle faulting, cutting across the nappe stack (the Trossieri Fault), indicates an extensional stage in the core of the Alpine belt, as previously documented in more external zones. This work provides a necessary and robust basis before an accurate discussion of processes acting during continental subduction of the Dora-Maira Massif may be understood.
Magmatic genesis, hydration, and subduction of the tholeiitic eclogite-facies Allalin gabbro (Western Alps, Switzerland)
Dietrich J, Hermann J and Pettke T
The Allalin gabbro of the Zermatt-Saas meta-ophiolite consists of variably metamorphosed Mg- to Fe-Ti-gabbros, troctolites, and anorthosites, which are crosscut by basaltic dykes. Field relationships of the various rock types and petrographic studies together with bulk rock and mineral chemical composition data allow the reconstruction of the complete geological history of the Allalin gabbro. With increasing magmatic differentiation, the incompatible element content in clinopyroxene increases (e.g., REEs and Zr by a factor of 5), whereas the Mg# decreases (from 86.4 to 74.6) as do the compatible element contents (e.g., Cr and Ni by factors of 3.5 and 5, respectively). Exhumation to shallower depths led to subsolidus ductile deformation and cooling of the gabbro followed by the intrusion of fine-grained basaltic dykes, which display chilled margins. Bulk rock data of these dykes reveal strong similarities in fluid-immobile trace element patterns to tholeiitic pillow basalts of the Zermatt-Saas and nearby meta-ophiolites. The recalculated REE patterns of the melt in equilibrium with igneous clinopyroxene is very similar to the REE patterns of the mafic dykes, indicating a cogenetic origin of pillow basalts, dykes, and gabbros. Together with the previously determined Jurassic intrusion age of the gabbro, our observations demonstrate that the Allalin gabbro intruded as a tholeiitic magma in a slow spreading MOR environment of the Piemonte-Ligurian ocean of the Alpine Tethys. Subduction of the Allalin gabbro resulted in different eclogitization extents of the Mg-gabbros as a function of variable hydration degrees. Metagabbros with low extents of hydration record incomplete eclogitization; the magmatic mineralogy (olivine + clinopyroxene + plagioclase) is preserved together with disequilibrium textures in the form of reaction coronae surrounding mineral boundaries. Metagabbros with high extents of hydration are completely eclogitized and display pseudomorphic replacement textures of magmatic minerals by eclogite-facies mineral assemblages, which required significant major to trace element transport across mineral domains. The locally variable extents of hydration took place near the sea floor, as recorded by the presence of Cl-apatite (6.28 wt% Cl), and an increase in B concentrations of minerals pseudomorphically replacing olivine (e.g., chlorite with 0.20-0.31 µg/g B and omphacite with 0.22-0.25 µg/g B) compared to magmatic olivine (0.12-0.16 µg/g B). Moreover, the chemical zonation pattern of metamorphic garnet coronae is different in completely eclogitized gabbros and gabbros with relic igneous minerals, in agreement with a main hydration event prior to subduction. The Allalin gabbro therefore represents a classical example of an oceanic gabbro formed in a slow spreading setting in the mid Jurassic that experienced heterogeneous hydration near the sea floor. Paleogene subduction of the gabbro to 70-80 km depth produced variably equilibrated gabbroic eclogites. In eclogite-facies Mg-gabbros, the water-rich minerals chlorite, talc, and chloritoid pseudomorphing magmatic olivine remained stable to these depths, revealing the potential relevance of hydrated Mg-gabbros as a fluid source at subarc depths in subduction zones.
The role of the antigorite + brucite to olivine reaction in subducted serpentinites (Zermatt, Switzerland)
Kempf ED, Hermann J, Reusser E, Baumgartner LP and Lanari P
Metamorphic olivine formed by the reaction of antigorite + brucite is widespread in serpentinites that crop out in glacier-polished outcrops at the Unterer Theodulglacier, Zermatt. Olivine overgrows a relic magnetite mesh texture formed during ocean floor serpentinization. Serpentinization is associated with rodingitisation of mafic dykes. Metamorphic olivine coexists with magnetite, shows high Mg# of 94-97 and low trace element contents. A notable exception is 4 µg/g Boron (> 10 times primitive mantle), introduced during seafloor alteration and retained in metamorphic olivine. Olivine incorporated 100-140 µg/g HO in Si-vacancies, providing evidence for low SiO-activity imposed by brucite during olivine growth. No signs for hydrogen loss or major and minor element diffusional equilibration are observed. The occurrence of olivine in patches within the serpentinite mimics the former heterogeneous distribution of brucite, whereas the network of olivine-bearing veins and shear zones document the pathways of the escaping fluid produced by the olivine forming reaction. Relic Cr-spinels have a high Cr# of 0.5 and the serpentinites display little or no clinopyroxene, indicating that they derive from hydrated harzburgitic mantle that underwent significant melt depletion. The enrichment of Mg and depletion of Si results in the formation of brucite during seafloor alteration, a pre-requisite for later subduction-related olivine formation and fluid liberation. The comparison of calculated bulk rock brucite contents in the Zermatt-Saas with average IODP serpentinites suggests a large variation in fluid release during olivine formation. Between 3.4 and 7.2 wt% HO is released depending on the magnetite content in fully serpentinized harzburgites (average oceanic serpentinites). Thermodynamic modelling indicates that the fluid release in Zermatt occurred between 480 °C and 550 °C at 2-2.5 GPa with the Mg# of olivine varying from 68 to 95. However, the majority of the fluid released from this reaction was produced within a narrow temperature field of < 30 °C, at higher pressures 2.5 GPa and temperatures 550-600 °C than commonly thought. Fluids derived from the antigorite + brucite reaction might thus trigger eclogite facies equilibration in associated metabasalts, meta-gabbros, meta-rodingites and meta-sediments in the area. This focused fluid release has the potential to trigger intermediate depths earthquakes at 60-80 km in subducted oceanic lithosphere.
Seismic history of western Anatolia during the last 16 kyr determined by cosmogenic Cl dating
Mozafari N, Özkaymak Ç, Sümer Ö, Tikhomirov D, Uzel B, Yeşilyurt S, Ivy-Ochs S, Vockenhuber C, Sözbilir H and Akçar N
Western Anatolia is one of the most seismically active regions worldwide. To date, the paleoseismic history of many major faults, in terms of recurrence intervals of destructive earthquakes, their magnitude, displacement, and slip rates is poorly understood. Regional crustal extension has produced major horst-graben systems bounded by kilometer-scale normal faults locally in carbonates, along which vertical crustal displacements occurred. In this study, we explore the seismic history of western Anatolia using Cl exposure dating through study of well-preserved carbonate normal fault scarps. To accomplish this, Cl concentrations in 214 samples from fault plane transects on the Rahmiye and Ören fault scarps were measured and compared with existing Cl measurements of 370 samples on five fault scraps in western Anatolia. At least 20 seismic events have been reconstructed over the past 16 kyr. The age correlation of the seismic events implies four phases of high seismic activity in western Anatolia, at around 2, 4, 6, and 8 ka. Slips are modeled ranging between 0.6 to 4.2 m per seismic event, but are probably the result of clustered earthquakes of maximum magnitude 6.5 to 7.1. While the average slip rates have values of 0.3 to 1.9 mm/yr, incremental slip rates of the faults range greater than 0.1 to 2.2 mm/yr, showing more activity mostly through late Holocene. Our finding reveals high capability of cosmogenic Cl dating to explore seismic behavior of active faults beyond the existing earthquake records.
Facies and depositional environments of the Upper Muschelkalk (Schinznach Formation, Middle Triassic) in northern Switzerland
Adams A and Diamond LW
Subsurface sedimentary strata in northern Switzerland, such as the Middle Triassic Upper Muschelkalk, are attracting interest as potential reservoirs for CO sequestration and for geothermal energy production. Characterizing facies in such strata aids prediction of reservoir properties in unexplored areas. Although well studied elsewhere, the Swiss Upper Muschelkalk has received little attention despite containing the southern-most deposits of the Central European Basin. The Upper Muschelkalk represents the deposits of a storm-dominated, homoclinal carbonate ramp, developed during a basin-wide 3rd-order transgressive-regressive cycle. Our facies analyses of nine boreholes across northern Switzerland reveal 12 lithofacies, eight lithofacies associations and four types of metre-scale 5th-order cycles corresponding to at least 23 short orbital eccentricity cycles. During the 3rd-order transgression, crinoidal bioherms developed across Switzerland followed by deep-ramp environments. Subsequently, tempestites were deposited up to and after the basin-wide maximum flooding surface. Lateral tempestite correlations indicate that Switzerland lay within an open-marine, mid-ramp environment during almost half of the depositional history. Mid-ramp deposits pass upwards to prograding shelly shoals, which sheltered a back-shoal lagoon containing patchy oolitic shoals. At the top of the Upper Muschelkalk, back-shoal sediments give way to coastal sabkha facies, which were overlain by oolitic shoals during a marine transgression. Shortly thereafter the top of the Upper Muschelkalk was dolomitized by brines from an overlying hypersaline environment that was later removed by a basin-wide erosive event. Overall, the paucity of porous shoal facies, unlike in southern Germany, has resulted in poor primary reservoir properties in the Upper Muschelkalk of Switzerland.
Subaqueous geomorphology and delta dynamics of Lake Brienz (Switzerland): implications for the sediment budget in the alpine realm
Fabbri SC, Haas I, Kremer K, Motta D, Girardclos S and Anselmetti FS
Non-invasive techniques such as seismic investigations and high-resolution multibeam sonars immensely improved our understanding of the geomorphology and sediment regimes in both the lacustrine and the marine domain. However, only few studies provide quantifications of basin wide-sediment budgets in lakes. Here, we use the combination of high-resolution bathymetric mapping and seismic reflection data to quantify the sediment budget in an alpine lake. The new bathymetric data of Lake Brienz reveal three distinct geomorphological areas: slopes with intercalated terraces, a flat basin plain, and delta areas with subaquatic channel systems. Quasi-4D seismic reflection data allow sediment budgeting of the lake with a total sediment input of 5.54 × 10 t sediment over 15 years of which three-quarter were deposited in the basin plain. Lake Brienz yields extraordinarily high sedimentation rates of 3.0 cm/yr in the basin plain, much more than in other Swiss lakes. This can be explained by (i) its role as first sedimentary sink in a high-alpine catchment, and by (ii) its morphology with subaquatic channel-complexes allowing an efficient sediment transfer from proximal to distal areas of the lake.
Impact of the electron donor on in situ microbial nitrate reduction in Opalinus Clay: results from the Mont Terri rock laboratory (Switzerland)
Bleyen N, Smets S, Small J, Moors H, Leys N, Albrecht A, De Cannière P, Schwyn B, Wittebroodt C and Valcke E
At the Mont Terri rock laboratory (Switzerland), an in situ experiment is being carried out to examine the fate of nitrate leaching from nitrate-containing bituminized radioactive waste, in a clay host rock for geological disposal. Such a release of nitrate may cause a geochemical perturbation of the clay, possibly affecting some of the favorable characteristics of the host rock. In this in situ experiment, combined transport and reactivity of nitrate is studied inside anoxic and water-saturated chambers in a borehole in the Opalinus Clay. Continuous circulation of the solution from the borehole to the surface equipment allows a regular sampling and online monitoring of its chemical composition. In this paper, in situ microbial nitrate reduction in the Opalinus Clay is discussed, in the presence or absence of additional electron donors relevant for the disposal concept and likely to be released from nitrate-containing bituminized radioactive waste: acetate (simulating bitumen degradation products) and H (originating from radiolysis and corrosion in the repository). The results of these tests indicate that-in case microorganisms would be active in the repository or the surrounding clay-microbial nitrate reduction can occur using electron donors naturally present in the clay (e.g. pyrite, dissolved organic matter). Nevertheless, non-reactive transport of nitrate in the clay is expected to be the main process. In contrast, when easily oxidizable electron donors would be available (e.g. acetate and H), the microbial activity will be strongly stimulated. Both in the presence of H and acetate, nitrite and nitrogenous gases are predominantly produced, although some ammonium can also be formed when H is present. The reduction of nitrate in the clay could have an impact on the redox conditions in the pore-water and might also lead to a gas-related perturbation of the host rock, depending on the electron donor used during denitrification.
Tin contamination in sediments of Lake Zurich: source, spread, history and risk assessment
Roethlin RL, Meister ACE, Gilli A, Lennartz ST, Amsler HE, Dittrich M, Wehrli B, Schönbächler M and Dubois N
Industrial activities of a silk dyeing factory in Thalwil, on the shore of Lake Zurich, Switzerland, caused extreme Sn contamination of lake sediments. In this study, we determine the contamination source, spread, and age using a multiproxy approach. We used X-ray fluorescence spectroscopy (XRF) core scanning and further geochemical analyses to assess the contamination spreading and thickness in the sedimentary column. We found elevated Sn levels throughout sediments of Lake Zurich, ranging from 177  in front of the former silk factory to 0.05  at the southeast end (background: ca. 0.006  ). The rapid concentration drop away from the shore suggests quick precipitation of a sparingly soluble inorganic Sn compound, which is confirmed by Scanning Electron Microscope Imaging in tandem with Energy-dispersive XRF spectroscopy (SEM-EDX) data. The Sn XRF profile of a varved core indicates a contamination onset in the early 1890s, a maximum around 1900, and a gradual decrease to low levels in the 1940s. High Sn concentrations in turbidite layers from the deep basin indicate that mass movements physically remobilised Sn. However, in stable conditions, in-situ porewater measurements (conc. < 0.5  ) using dialyse plates show little Sn remobilisation into the lake water (0.05  ). The low remobilisation, reducing conditions, and high sulphide contents in the contaminated layers suggest that Sn is firmly bound to the sediments. Combined with the low toxicity of Sn, we conclude that the Sn contamination poses no threat to lake biota or drinking water production.