Investigation of Thermal Behaviour of a Hybrid Precasted Concrete Floor using Embedded Sensors
Concrete structures expand and contract in response to temperature changes which can result in structural strain and cracking. However, there is a limited amount of robust field data on hybrid concrete floor structures. Shortage of such data impacts on our understanding of how concrete structures respond to thermal effects and ultimately the overall design of concrete structures. Thus, a comprehensive structural and environmental monitoring strategy was implemented by the authors during the construction of an educational building. Sensors were embedded in the precast and in situ components of a hybrid concrete lattice girder flat slab so that the thermal response of the floor during the manufacture, construction and operational stages could be investigated. Many aspects of the thermal behaviour of the floor during the construction phase were monitored using the embedded sensors. The early-age thermal effects during curing and the impact of the variation of ambient temperature (daily and seasonal) and solar radiation on the behaviour of concrete floor is explored in the paper. Values for restraint factors and the in situ restrained coefficient of thermal expansion of concrete are calculated using the data from the embedded sensors. Numerical modelling of the thermal behaviour of the hybrid concrete floor was undertaken and validated using the real-time field measurements. The data presented and analysed in this paper can be used to improve the understanding and modelling of the thermal behaviour of a hybrid concrete floor. This will assist with improved design of sustainable buildings as it allows the environmental performance of the floor to be optimised with respect to controlling the internal environment, thermal mass and energy efficiency.
Estimating a Seismic Wave Velocity for Exciting the Greatest Anticipated Vertical Deck Displacement of a Cable-Stayed Bridge Subjected to Asynchronous Excitation
The purpose of this study is to examine the effects of the seismic wave velocity on vertical displacement of a cable-stayed bridge's deck under asynchronous excitation. The Quincy Bayview Bridge located in Illinois, USA, and four other generic bridges are selected for the study. Ten records obtained from earthquakes in US, Japan, and Taiwan are used as input for the seismic excitation in the time-history analysis. Two equations are proposed in this study to determine a critical seismic wave velocity that would produce the greatest vertical deck displacement. The critical wave velocity depends on the total length of the bridge, the fundamental period of the bridge, and the . The in this study is 0.72, which is based on analyzed results from the five selected bridges. The two equations and the are verified through application on two 3-span cable-stayed bridges studied previously by Nazmy and Abdel-Ghaffar. The proposed C-factor of 0.72 is recommended for use for typical 3-span cable-stayed bridges with a side-to-main span ratio of about 0.48. The methodology developed in the study, however, can be applied to any specific bridge to examine the excitation of the deck vertical displacement under the longitudinal seismic ground motion.