BioEnergy Research

Characteristics of Biogas Production and Synergistic Effect of Primary Sludge and Food Waste Co-Digestion
Rakić N, Šušteršič V, Gordić D, Jovičić N, Bošković G and Bogdanović I
Co-digestion implementation in wastewater treatment plants enhances biogas yield, so this research investigated the optimal ratio of biodegradable waste and sewage sludge. The increase in biogas production was investigated through batch tests using basic BMP equipment, while synergistic effects were evaluated by chemical oxygen demand (COD) balance. Analyses were performed in four volume basis ratios (3/1, 1/1, 1/3, 1/0) of primary sludge and food waste with added low food waste: 3.375%, 4.675%, and 5.35%, respectively. The best proportion was found to be 1/3 with the maximum biogas production (618.7 mL/g VS added) and the organic removal of 52.8% COD elimination. The highest enhancement rate was observed among co-digs 3/1 and 1/1 (105.72 mL/g VS). A positive correlation between biogas yield and COD removal is noticed while microbial flux required an optimal pH, value of 8 significantly decreased daily production rate. COD reductions further supported the synergistic impact; specifically, an additional 7.1%, 12.8%, and 17% of COD were converted into biogas during the co-digestions 1, 2, and 3, respectively. Three mathematical models were applied to estimate the kinetic parameters and check the accuracy of the experiment. The first-order model with a hydrolysis rate of 0.23-0.27 indicated rapidly biodegradable co-/substrates, modified Gompertz confirmed immediate commencement of co-digs through zero lag phase, while the Cone model had the best fit of over 99% for all trials. Finally, the study points out that the COD method based on linear dependence can be used for developing relatively accurate model for biogas potential estimation in anaerobic digestors.
Hydrothermal Carbonization of Sewage Sludge with Sawdust and Corn Stalk: Optimization of Process Parameters and Characterization of Hydrochar
Shakiba A, Aliasghar A, Moazeni K and Pazoki M
Disposal of sewage sludge (SS) is one of the problems in treatment plants; however, SS has a high-water volume and lacks some compounds and can be mixed with other biomass. The present study analyzed co-hydrothermal carbonization of sewage sludge with sawdust and corn stalk. This research aimed to optimize the process parameters, the temperature in the range of 180-300 °C, the reaction time in the range of 30-60 min, and pH in the range of 5-9 on the mass yield, energy yield, and high heat value (HHV) to increase the quality of hydrochar, and to analyze the effect of hydrothermal carbonization (HTC) on the characteristics of raw materials and hydrochar. The response surface method and Benken's box model were conducted using Design Expert 10 software. The optimal conditions for HHV, mass yield, and energy yield were 15.802 MJ/kg, 63.754%, and 67.415% respectively which occurred in the 205.358 °C, 30 min reaction time, and pH of 5. The temperature was the most influential parameter. The morphological, physicochemical, thermal, and crystalline properties of the hydrochar with the maximum HHV, mass yield and energy yield were evaluated as well. These results demonstrate that HTC is a suitable process to produce hydrochar, which can be used as a direct solid fuel.
Thermochemical Liquefaction of Pomace Using Sub/Supercritical Ethanol: an Integrated Experimental and Preliminary Economic Feasibility Study
Okoro OV, Nie L, Waeytens J, Hamidi M and Shavandi A
Fossil sourced chemicals such as aromatics, are widely employed in the chemical industry for the production of commodity items. Recognizing the un-sustainability of existing approaches in the production of these chemicals, the current study investigated the valorization of apple pomace (AP) for their production. The present study assessed AP valorization by imposing variations in processing conditions of temperature (100-260 °C), time (0.5-12 h), alcohol/water ratio v/v (0:1-1:0), and Fe/HO molar ratio (10:1-100-1), in accordance to the Box-Behnken experimental design. The optimal yield of the oil was 24.6 wt.%, at the temperature, time, alcohol/water ratio v/v, and Fe/HO molar ratio of 260 °C, 4.7 h, 1, and 100, respectively. Notably, the application of gas chromatography-mass spectroscopy showed that the oil product contained mainly aromatics and interestingly also alkanes, indicating that the experimental conditions imposed promoted secondary hydrogenation reactions of oxygen-containing species during AP valorization. A consideration of the comparative economics of the proposed AP valorization and the existing AP management approach, using approximate estimation techniques, highlighted the potential of a ~ 59% reduction in the unit cost of AP management. The study therefore presents a compelling basis for future investigations into AP waste management using the thermochemical liquefaction technology.
Nanoparticle-mediated Impact on Growth and Fatty Acid Methyl Ester Composition in the Cyanobacterium
Tabatabai B, Fathabad SG, Bonyi E, Rajini S, Aslan K and Sitther V
Insufficient light supply is a major limitation in cultivation of cyanobacteria for scaled up biofuel production and other biotechnological applications, which has driven interest in nanoparticle-mediated enhancement of cellular light capture. In the present study, wild type (Fd33) and halotolerant (HSF33-2) strains were grown in solution with 20, 100, and 200 nm-diameter gold nanoparticles (AuNPs) to determine their impact on biomass accumulation, pigmentation, and fatty acid methyl ester (FAME) production. Results revealed a significant increase in growth of Fd33 (0.244 ± 0.006) and HSF33-2 (0.112 ± 0.003) when treated with 200 nm AuNPs. In addition, we observed a significant increase in chlorophyll accumulation in 200 nm AuNP-treated Fd33 (25.7%) and HSF33-2 (36.3%) indicating that NPs enhanced photosynthetic pigmentation. We did not observe any alteration in FAME composition and biodiesel properties of transesterified lipids among all AuNP treatments. Interactions between and AuNPs were visualized using scanning electron microscopy. Energy dispersive X-ray spectroscopy confirmed the presence of AuNPs outside cells with aggregation in high cell density locales. Our findings indicate that nanotechnological approaches could significantly enhance growth of the organism with no negative effect on FAME-derived biodiesel properties, thus augmenting as a potential biofuel agent.
as a biodiesel agent: Identification of fatty acid methyl esters via microwave-assisted direct in situ transesterification
Tabatabai B, Chen H, Lu J, Giwa-Otusajo J, McKenna AM, Shrivastava AK and Sitther V
Increasing concerns on environmental and economic issues linked to fossil fuel use has driven great interest in cyanobacteria as third generation biofuel agents. In this study, the biodiesel potential of a model photosynthetic cyanobacterium, , was identified by fatty acid methyl esters (FAME) via direct transesterification. Total lipids in wild type (Fd33) and halotolerant (HSF33-1 and HSF33-2) strains determined by gravimetric analysis yielded 19% cellular dry weight (CDW) for HSF33-1 and 20% CDW for HSF33-2, which were comparable to Fd33 (18% CDW). Gas chromatography-mass spectrometry detected a high ratio of saturated to unsaturated FAMEs (2.48-2.61) in transesterified lipids, with methyl palmitate being the most abundant (C16:0). While theoretical biodiesel properties revealed high cetane number and oxidative stability, high cloud and pour point values indicated that fuel blending could be a viable approach. Significantly high FAME abundance in total transesterified lipids of HSF33-1 (40.2%) and HSF33-2 (69.9%) relative to Fd33 (25.4%) was identified using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry, indicating that robust salt stress response corresponds to higher levels of extractable FAME. Alkanes, a key component in conventional fuels, were present in transesterified lipids across all strains confirming that natural synthesis of these hydrocarbons is not inhibited during biodiesel production. While analysis of photosynthetic pigments and phycobiliproteins did not reveal significant differences, FAME abundance varied significantly in wild type and halotolerant strains indicating that photosynthetic pathways are not the sole factors that determine fatty acid production. We characterize the potential of for biofuel production with FAME yields in halotolerant strains higher than the wild type with no loss in photosynthetic pigmentation.
In Situ Enzymatic Conversion of IMET1 Biomass into Fatty Acid Methyl Esters
Wang Y, Lee YY, Santaus TM, Newcomb CE, Liu J, Geddes CD, Zhang C, Hu Q and Li Y
Conventionally, production of methyl ester fuels from microalgae occurs through an energy-intensive two-step chemical extraction and transesterification process. To improve the energy efficiency, we performed in situ enzymatic conversion of whole algae biomass from an oleaginous heterokont microalga IMET1 with the immobilized lipase from . The fatty acid methyl ester yield reached 107.7% for dry biomass at biomass to butanol to methanol weight ratio of 1:2:0.5 and a reaction time of 12 h at 25 °C, representing the first report of efficient whole algae biomass conversion into fatty acid methyl esters at room temperature. Different forms of algal biomass including wet biomass were tested. The maximum yield of wet biomass was 81.5%. Enzyme activity remained higher than 95% after 55 days of treatment (equal to 110 cycles of reaction) under the conditions optimized for dry algae biomass conversion. The low reaction temperature, high enzyme stability, and high yield from this study indicate in situ enzymatic conversion of dry algae biomass may potentially be used as an energy-efficient method for algal methyl ester fuel production while allowing co-product recovery.
Fermentation of D-xylose to Ethanol by CAT-1 Recombinant Strains
Coimbra L, Malan K, Fagúndez A, Guigou M, Lareo C, Fernández B, Pratto M and Batista S
Ethanol production by the D-xylose fermentation of lignocellulosic biomass would augment environmental sustainability by increasing the yield of biofuel obtained per cultivated area. A set of recombinant strains derived from the industrial strain CAT-1 was developed for this purpose. First, two recombinant strains were obtained by the chromosomal insertion of genes involved in the assimilation and transport of D-xylose (-N376F). Strain CAT-1-XRT was developed with heterologous genes for D-xylose metabolism from the oxo-reductive pathway of (-K270R, ); and strain CAT-1-XIT, with D-xylose isomerase ( gene, XI) from Moreover, both recombinant strains contained extra copies of homologous genes for xylulose kinase (XK) and transaldolase (TAL1). Furthermore, plasmid (pRS42K::XI) was constructed with from sp. transferred to CAT-1, CAT-1-XRT, and CAT-1-XIT, followed by an evolution protocol. After 10 subcultures, CAT-1-XIT (pRS42K::XI) consumed 74% of D-xylose, producing 12.6 g/L ethanol (0.31 g ethanol/g D-xylose). The results of this study show that CAT-1-XIT (pRS42K::XI) is a promising recombinant strain for the efficient utilization of D-xylose to produce ethanol from lignocellulosic materials.
Biodiesel Production Using Homogeneous, Heterogeneous, and Enzyme Catalysts via Transesterification and Esterification Reactions: a Critical Review
Mandari V and Devarai SK
The excessive utilization of petroleum resources leads to global warming, crude oil price fluctuations, and the fast depletion of petroleum reserves. Biodiesel has gained importance over the last few years as a clean, sustainable, and renewable energy source. This review provides knowledge of biodiesel production via transesterification/esterification using different catalysts, their prospects, and their challenges. The intensive research on homogeneous chemical catalysts points to the challenges in using high free fatty acids containing oils, such as waste cooking oils and animal fats. The problems faced are soap formation and the difficulty in product separation. On the other hand, heterogeneous catalysts are more preferable in biodiesel synthesis due to their ease of separation and reusability. However, in-depth studies show the limited activity and selectivity issues. Using biomass waste-based catalysts can reduce the biodiesel production cost as the materials are readily available and cheap. The use of an enzymatic approach has gained precedence in recent times. Additionally, immobilization of these enzymes has also improved the statistics because of their excellent functional properties like easy separation and reusability. However, free/liquid lipases are also growing faster due to better mass transfer with reactants. Biocatalysts are exceptional in good selectivity and mild operational conditions, but attractive features are veiled with the operational costs. Nanocatalysts play a vital role in heterogeneous catalysis and lipase immobilization due to their excellent selectivity, reactivity, faster reaction rates owing to their higher surface area, and easy recovery from the products and reuse for several cycles.
Bioethanol Production from UK Seaweeds: Investigating Variable Pre-treatment and Enzyme Hydrolysis Parameters
Kostas ET, White DA and Cook DJ
This study describes the method development for bioethanol production from three species of seaweed. , and for the first time were used as representatives of brown, green and red species of seaweed, respectively. Acid thermo-chemical and entirely aqueous (water) based pre-treatments were evaluated, using a range of sulphuric acid concentrations (0.125-2.5 M) and solids loading contents (5-25 % [w/v]; biomass: reactant) and different reaction times (5-30 min), with the aim of maximising the release of glucose following enzyme hydrolysis. A pre-treatment step for each of the three seaweeds was required and pre-treatment conditions were found to be specific to each seaweed species. and were more suited with an aqueous (water-based) pre-treatment (yielding 125.0 and 360.0 mg of glucose/g of pre-treated seaweed, respectively), yet interestingly non pre-treated yielded 106.4 g g glucose. required a dilute acid thermo-chemical pre-treatment in order to liberate maximal glucose yields (218.9 mg glucose/g pre-treated seaweed). Fermentations with NCYC2592 of the generated hydrolysates gave ethanol yields of 5.4 g L, 7.8 g L and 3.2 g L from , and , respectively. This study highlighted that entirely aqueous based pre-treatments are effective for seaweed biomass, yet bioethanol production alone may not make such bio-processes economically viable at large scale.
Techno-Economic Analysis for Direct Processing of Wet Solid Residues Originated from Grain and Inedible Plant Wastes
Lee MS, Hoadley A, Patel J, Lim S, Kozielski K and Li C
Large number of solid wastes is produced from ethanol and wine plants sourcing from grain and inedible plant wastes, for example, WDGS (wet distiller's grain with soluble) and DDGS (dry distiller's grain with soluble) produced from ethanol plants using corn. This study investigates alternative methods for using these co-products through combustion and anaerobic digestion. Process simulation and economic analysis were conducted using current market prices to evaluate the viability of the processes. Products in the form of energy are produced. Optimization of the corn ethanol plant was also explored for re-using the heat and electricity produced in those processes. These processes will supply more viable options to utilisation of those wastes. The anaerobic digestion of WDGS to produce electricity scenario was found to have the biggest profit among the four scenarios which can bring the annual income of 14.1 million Australian dollar to the ethanol plant. An environmental analysis of the CO emissions was also conducted. Using the Australian state emission factor, the amount of CO offset through both combustion and anaerobic digestion can be seen. The anaerobic digestion of WDGS to supply heat to the plant was proved having the largest CO abatement with the value of 0.58 kg-COe/L-EtOH.
Comparison of the Initial Growth of Different Poplar Clones on Four Sites in Western Slovakia-Preliminary Results
Heilig D, Heil B, Leibing C, Röhle H and Kovács G
This study was conducted to evaluate four hybrid poplar comparison tests along a groundwater availability gradient in Western Slovakia. The weather fluctuation during the 3-year study period was described with indices, such as the Forestry Aridity Index (FAI) or the hydrothermal coefficient (HTC). The soil chemical and physical parameters were determined from soil samples from the two upper horizons. The nutrient status and supply of the trees were categorized based on leaf elemental analysis. Altogether, 21 different clones from 6 genomic groups were compared. The survival (SRV), diameter at breast height (DBH), and height of the trees (H) had been measured annually since the plantations were established, and from these measurements, mean annual height increment (MAHI) values were derived. These weather, edaphic, and clonal factors were evaluated and compared. Significant effects of the site (edaphic factors) were found as the primary source of variance and clonal differences as secondary sources of variance among the growth of trees. The interaction of site × clone effects was not significant. The results showed that for short rotation forestry (SRF), the site parameters-especially groundwater availability-are key factors.
Sustainability of Palm Biodiesel in Transportation: a Review on Biofuel Standard, Policy and International Collaboration Between Malaysia and Colombia
Yusoff MNAM, Zulkifli NWM, Sukiman NL, Chyuan OH, Hassan MH, Hasnul MH, Zulkifli MSA, Abbas MM and Zakaria MZ
Biodiesel is gaining prominence as a superior alternative source of energy to replace petroleum-based fuel in transportation. As of today, the biodiesel market continuous to rise up as the biofuel has been introduced to more than 60 countries worldwide. The aim of the present review is to highlight on the scenario of the biofuel implementation in transportation sector towards sustainable development in Colombia and Malaysia. Colombia serves as an ideal comparative case for Malaysia in terms of biodiesel development since the country is the main palm oil producer in Latin America region and the pioneer in bioethanol industry. The first section shows an overview on the biodiesel as an alternative fuel in transportation. The next section will focus on a comparative study between Malaysia and Colombia biodiesel sector in terms of energy supply, resource, production and consumption, standards, techno-economic cost and their biodiesel policies. A comprehensive review was studied to discuss on the sustainability of palm cultivation and biodiesel, impact of palm industry and biodiesel policy in transportation sector and potential international collaboration between Malaysia and Colombia to improve their existing policies, strategies and blueprints related to the palm biodiesel industry, thus overcoming the challenges when dealing with global energy issue.
Enhanced Biomass Production Combined with Anaerobic Cattle Wastewater Bioremediation
de Souza DS, Valadão RC, de Souza ERP, Barbosa MIMJ and de Mendonça HV
Microalgae biomasses offer important benefits regarding macromolecules that serve as promising raw materials for sustainable production. In the present study, the microalgae DHR 20 was cultivated in horizontal photobioreactors (HPBR), with and without temperature control, in batch mode (6 to 7 days), with anaerobically digested cattle wastewater (ACWW) as substrate. High dry biomass concentrations were observed (6.3-7.15 g L). Volumetric protein, carbohydrate, and lipid productivities were 0.299, 0.135, and 0.108 g L day, respectively. Promising lipid productivities per area were estimated between 22.257 and 39.446 L ha year. High CO bio-fixation rates were recorded (875.6-1051 mg L day), indicating the relevant potential of the studied microalgae to mitigate atmospheric pollution. Carbon concentrations in biomass ranged between 41.8 and 43.6%. ACWW bioremediation was satisfactory, with BOD and COD removal efficiencies of 72.2-82.6% and 63.3-73.6%. Maximum values of 100, 95.5, 92.4, 80, 98, and 94% were achieved concerning the removal of NH , NO , P, SO , Zn, and Cu, respectively. Total and thermotolerant coliform removals reached 99-99.7% and 99.7-99.9%. This microalgae-mediated process is, thus, promising for ACWW bioremediation and valuation, producing a microalgae biomass rich in macromolecules that can be used to obtain friendly bio-based products and bioenergy.
Comparison of Operating Methods in Cartridge Anaerobic Digestion of Corn Stover
Yang L, Moran T and Han A
Anaerobic digestion of lignocellulosic biomass faces changes such as biomass floating and effluent discharge. To overcome these challenges, a unique removable cartridge anaerobic digester was built and tested using corn stover as the feedstock. Three operating methods differing in the number of cartridges and days of rotation were tested. The first method used three cartridges, with each cartridge being rotated every 7 days. The second and third methods employed four cartridges, with cartridges being rotated every 7 and 9-10 days, respectively. The retention time for methods 1, 2, and 3 was 21, 28, and 38 days, respectively. After observation spanning 1 year, it was found that the cartridge digester was capable of generating a stable amount of biogas for energy without biomass floating or effluent discharging issues. The average daily methane yield from each method was 7.57, 7.11, and 6.82 L/day/kg-VS, and the cumulative methane yield was 158.95, 199.04, and 259.00 L/kg-VS, respectively. Ammonium nitrogen and pH values were in normal ranges throughout the experiment. This study provided new knowledge in operating and optimizing this cartridge digester, which may be broadly used for the anaerobic digestion of lignocellulosic biomass in the near future.
Waste-Derived Fuels and Renewable Chemicals for Bioeconomy Promotion: A Sustainable Approach
Narisetty V, R R, Maitra S, Tarafdar A, Alphy MP, Kumar AN, Madhavan A, Sirohi R, Awasthi MK, Sindhu R, Varjani S and Binod P
Bio-based fuels and chemicals through the biorefinery approach has gained significant interest as an alternative platform for the petroleum-derived processes as these biobased processes are noticed to have positive environmental and societal impacts. Decades of research was involved in understanding the diversity of microorganisms in different habitats that could synthesize various secondary metabolites that have functional potential as fuels, chemicals, nutraceuticals, food ingredients, and many more. Later, due to the substrate-related process economics, the diverse low-value, high-carbon feedstocks like lignocellulosic biomass, industrial byproducts, and waste streams were investigated to have greater potential. Among them, municipal solid wastes can be used as the source of substrates for the production of commercially viable gaseous and liquid fuels, as well as short-chain fattyacids and carboxylic acids. In this work, technologies and processes demanding the production of value-added products were explained in detail to understand and inculcate the value of municipal solid wastes and the economy, and it can provide to the biorefinery aspect.
Bioethanol Production from Brewers Spent Grains Using a Fungal Consolidated Bioprocessing (CBP) Approach
Wilkinson S, Smart KA, James S and Cook DJ
Production of bioethanol from brewers spent grains (BSG) using consolidated bioprocessing (CBP) is reported. Each CBP system consists of a primary filamentous fungal species, which secretes the enzymes required to deconstruct biomass, paired with a secondary yeast species to ferment liberated sugars to ethanol. Interestingly, although several pairings of fungi were investigated, the sake fermentation system ( and NCYC479) was found to yield the highest concentrations of ethanol (37 g/L of ethanol within 10 days). On this basis, 1 t of BSG (dry weight) would yield 94 kg of ethanol using 36 hL of water in the process. QRT-PCR analysis of selected carbohydrate degrading (CAZy) genes expressed by in the BSG sake system showed that hemicellulose was deconstructed first, followed by cellulose. One drawback of the CBP approach is lower ethanol productivity rates; however, it requires low energy and water inputs, and hence is worthy of further investigation and optimisation.
Biomass Energy in Malaysia: Current Scenario, Policies, and Implementation Challenges
Rashidi NA, Chai YH and Yusup S
The energy demand in Malaysia has shown a dramatic increase over the last few years: with natural gas and coal being the primary contributors. Nevertheless, due to declining in fossil fuel reserves coupled with negative environmental impacts, shifting to sustainable renewable energy for meeting the future energy demand is recommended. Since Malaysia is rich with natural resources, utilization of biomass energy (bioenergy/biofuel) as the alternative energy is promising to be further explored. Therefore, this review paper intents to discuss the current scenario of different types of biomass energy in Malaysia along with the up-to-date local biomass energy-related environmental policy (from 2016 onwards). In addition, challenges and barriers for large-scale implementation of the biomass energy in Malaysia are to be discussed. Overall, this review paper is interesting as it can assist in promoting the biomass utilization as energy source, and to ensure the future growth of biomass energy market in the country along with its effective implementation while alleviating poor disposal problem and to create job employment opportunities. Furthermore, a collective effort to expand potential biomass feedstocks, apart from oil palm, should be emphasized to encourage the renewable energy production diversification in the nation.
A Methodological Framework for Assessing the Sustainability of Solid Biofuels Systems
Sacramento Rivero JC, Mwampamba TH, Navarro-Pineda FS, Musule R, García CA, Martínez-Bravo RD, Morales-García AL, Equihua-Sánchez M, Fuentes-Gutiérrez AF, Gallardo-Álvarez RM, Ruiz Camou CR, Grande-Acosta GK, Manzini F, Islas-Samperio JM and Camarillo R
This paper introduces a methodological framework for assessing the sustainability of solid biofuels in Mexico. The designed framework comprises 13 normalized indicators and two diagnostic studies, covering the economic, social, environmental, and institutional sustainability dimensions, and their intersections. Indicators are normalized using the concept of load capacity of a system, similarly to the planetary boundaries. Thus, the graphical representation of results facilitates their multidimensional analysis. The framework was applied to three case studies: traditional fuelwood in rural households, charcoal for restaurant grilling, and electricity cogeneration from sugarcane bagasse. This was part of an iterative process of testing and refining the framework and simultaneously demonstrating its application in the Mexican bioenergy context. This led to the conclusion that the resulting framework (a) provides a useful, quantitative, and comprehensive overview of both broad and specific sustainability aspects of the assessed system; (b) requires a balance of accessible but also scattered or sensitive data, similarly to most existing frameworks; (c) is highly flexible and applicable to both modern and traditional solid biofuels; and (d) is simple to communicate and interpret for a wide audience. Key directions for improvement of the framework are also discussed.
Lignocellulosic Biomass Valorization for Bioethanol Production: a Circular Bioeconomy Approach
Devi A, Bajar S, Kour H, Kothari R, Pant D and Singh A
Lignocellulosic biomass generated from different sectors (agriculture, forestry, industrial) act as biorefinery precursor for production of second-generation (2G) bioethanol and other biochemicals. The integration of various conversion techniques on a single platform under biorefinery approach for production of biofuel and industrially important chemicals from LCB is gaining interest worldwide. The waste generated on utilization of bio-resources is almost negligible or zero in a biorefinery along with reduced greenhouse gas emissions, which supports the circular bioeconomy concept. The economic viability of a lignocellulosic biorefinery depends upon the efficient utilization of three major components of LCB-cellulose, hemicellulose and lignin. The heterogeneous structure and recalcitrant nature of LCB is main obstacle in its valorization into bioethanol and other value-added products. The success of bioconversion process depends upon methods used during pre-treatment, hydrolysis and fermentation processes. The cost involved in each step of the bioconversion process affects the viability of cellulosic ethanol. The lignocellulose biorefinery has ample scope, but much-focused research is required to fully utilize major parts of lignocellulosic biomass with zero wastage. The present review entails lignocellulosic biomass valorization for ethanol production, along with different steps involved in its production. Various value-added products produced from LCB components were also discussed. Recent technological advances and significant challenges in bioethanol production are also highlighted in addition to future perspectives.
Testing the Use of Static Chamber Boxes to Monitor Greenhouse Gas Emissions from Wood Chip Storage Heaps
Whittaker C, Yates NE, Powers SJ, Donovan N, Misselbrook T and Shield I
This study explores the use of static chamber boxes to detect whether there are fugitive emissions of greenhouse gases (GHGs) from a willow chip storage heap. The results from the boxes were compared with those from 3-m stainless steel probes inserted into the core of the heap horizontally and vertically at intervals. The results from probes showed that there were increases of carbon dioxide (CO) concentrations in the heap over the first 10 days after heap establishment, which were correlated with a temperature rise to 60 °C. As the CO declined, there was a small peak in methane (CH) concentration in probes orientated vertically in the heap. Static chambers positioned at the apex of the heap detected some CO fluxes as seen in the probes; however, the quantities were small and random in nature. A small (maximum 5 ppm) flux in CH occurred at the same time as the probe concentrations peaked. Overall, the static chamber method was not effective in monitoring fluxes from the heap as there was evidence that gases could enter and leave around the edges of the chambers during the course of the experiment. In general, the use of standard (25 cm high) static chambers for monitoring fluxes from wood chip heaps is not recommended.
Locating Hotspots for the Social Life Cycle Assessment of Bio-Based Products from Short Rotation Coppice
Fürtner D, Ranacher L, Perdomo Echenique EA, Schwarzbauer P and Hesser F
The establishment of new value chains raises expectations in economic and social benefits. To determine whether these expectations can be fulfilled or whether there are also negative consequences, social aspects should be assessed as early as the R&D phase. Potential social impacts can be assessed with the help of a social life cycle assessment (SLCA). A common problem in SLCA studies is the large number of social aspects. Thus, it is important to prioritize the most relevant aspects. Scholars agree that socioeconomic indicators should not be selected on a purely intuitive and common sense basis and that a standardized approach is missing. A three-step process has been developed to identify the most vulnerable and relevant social aspects. These three steps were implemented into a case study to empirically test the method. Short-rotation-coppice as an alternative form of agricultural dendromass production is one possibility to obtain wood resources for the processing of bio-based products. The use of agricultural land for dendromass production promises additional income for the region's farmers and job opportunities for the local population. The extant literature shows that the most frequently addressed impacts are related to workers' health and safety aspects. The outcome of this study aims to support future research by identifying an appropriate approach for the selection of indicators in SLCA. For studies with a similar focus, the proposed set of indicators can be used as a framework in itself or serve as a basis for the choice of relevant social indicators.