IoT-based disease prediction using machine learning
COVID-19 disrupted lives and livelihoods and affected various sectors of the economy. One such domain was the already overburdened healthcare sector, which faced fresh challenges as the number of patients rose exponentially and became difficult to deal with. In such a scenario, telemedicine, teleconsultation, and virtual consultation became increasingly common to comply with social distancing norms. To overcome this pressing need of increasing 'remote' consultations in the 'post-COVID' era, the Internet of Things (IoT) has the potential to play a pivotal role, and this present paper attempts to develop a novel system that implements the most efficient machine learning (ML) algorithm and takes input from the patients such as symptoms, audio recordings, available medical reports, and other histories of illnesses to accurately and holistically predict the disease that the patients are suffering from. A few of the symptoms, such as fever and low blood oxygen, can also be measured via sensors using Arduino and ESP8266. It then provides for the appropriate diagnosis and treatment of the disease based on its constantly updated database, which can be developed as an application-based or website-based platform.
AI-based wavelet and stacked deep learning architecture for detecting coronavirus (COVID-19) from chest X-ray images
A novel coronavirus (COVID-19), belonging to a family of severe acute respiratory syndrome coronavirus 2 (SARs-CoV-2), was identified in Wuhan city, Hubei, China, in November 2019. The disease had already infected more than 681.529665 million people as of March 13, 2023. Hence, early detection and diagnosis of COVID-19 are essential. For this purpose, radiologists use medical images such as X-ray and computed tomography (CT) images for the diagnosis of COVID-19. It is very difficult for researchers to help radiologists to do automatic diagnoses by using traditional image processing methods. Therefore, a novel artificial intelligence (AI)-based deep learning model to detect COVID-19 from chest X-ray images is proposed. The proposed work uses a wavelet and stacked deep learning architecture (ResNet50, VGG19, Xception, and DarkNet19) named WavStaCovNet-19 to detect COVID-19 from chest X-ray images automatically. The proposed work has been tested on two publicly available datasets and achieved an accuracy of 94.24% and 96.10% on 4 classes and 3 classes, respectively. From the experimental results, we believe that the proposed work can surely be useful in the healthcare domain to detect COVID-19 with less time and cost, and with higher accuracy.
Detecting and analyzing topics of massive COVID-19 related tweets for various countries
With the flare-up of the COVID-19 infection since 2020, COVID-19 has been one of the hottest topics on Twitter. Topic modeling is one of the most popular analyses, which extracts the topics from the text. This paper proposes a method to extract the most-discussed topics for 32 countries of the world. In this regard, more than five million related tweets have been studied, and a method based on content analysis is proposed to identify the exact location of each tweet. Then, by using the statistical algorithm of Latent Dirichlet Allocation, the main topics of the tweets are identified. By leveraging sentiment analysis, the topics are afterward divided into positive and negative groups, and their trends in a quarterly period are investigated for the countries under study. The outcome of the analysis of time trends shows that for most countries, the trend of negative topics is highly correlated with the number of confirmed cases of COVID-19
Management for stroke intelligent early warning empowered by big data
Global aging population, especially with the global pandemic outbreak of the Corona Virus Disease 2019 (COVID-19), has endangered human health security. Digital information technology through big data empowerment and intelligent application is widely considered a key element to solve the problems. Stroke is a life-threaten disorder. We studied individual health management and disease risk perception using human health assessment model and make full use of wearable wireless sensor, Internet of Things, big data, and Artificial Intelligence for potential risk monitoring and real-time stroke warning. We proposed an effective method of monitoring, early warning and rescue to improve the stroke treatment. The result shows that the health management empowered by big data can generate new opportunities and ideas to solve early detection and warning of stroke.
Enhanced framework for COVID-19 prediction with computed tomography scan images using dense convolutional neural network and novel loss function
Recent studies have shown that computed tomography (CT) scan images can characterize COVID-19 disease in patients. Several deep learning (DL) methods have been proposed for diagnosis in the literature, including convolutional neural networks (CNN). But, with inefficient patient classification models, the number of 'False Negatives' can put lives at risk. The primary objective is to improve the model so that it does not reveal 'Covid' as 'Non-Covid'. This study uses Dense-CNN to categorize patients efficiently. A novel loss function based on cross-entropy has also been used to improve the CNN algorithm's convergence. The proposed model is built and tested on a recently published large dataset. Extensive study and comparison with well-known models reveal the effectiveness of the proposed method over known methods. The proposed model achieved a prediction accuracy of 93.78%, while false-negative is only 6.5%. This approach's significant advantage is accelerating the diagnosis and treatment of COVID-19.
COVID-19 identification in chest X-ray images using intelligent multi-level classification scenario
COVID-19 is an evolving respiratory transmittable disease, and it holds all daily activity worldwide as a global pandemic. It appeared in the city of Wuhan (China) in November 2019 and slowly started spreading to the rest of the world. The number of cases keeps increasing drastically, leading to a shortage of medical resources and testing kids worldwide. As the physicians facing this problem, several scientists and specialists in Artificial Intelligent (AI) are rendering their support to healthcare professionals in the early detection of COVID-19 using chest X-ray image samples to determine the level of severity at a low cost. This paper proposed Genetic Deep Learning Convolutional Neural Network (GDCNN) architecture that includes Huddle Particle Swarm Optimization as an alternative to Gradient descent. Huddle PSO performs better when clubbed with GDCNN architecture. Based on publicly available datasets, trained chest X-ray images are used to predict and identify various pneumonia diseases. The proposed model performed better with an accuracy of 97.23%, a sensitivity of 98.62%, specificity of 97.0%, and precision of 93.0%. The proposed model act as a tool for earlier detection of COVID-19. In the future, we plan to apply the proposed model for the larger dataset and to predict various lung diseases.
Adopting effective hierarchal IoMTs computing with K-efficient clustering to control and forecast COVID-19 cases
The Internet of Medical Things (IoMTs) based on fog/cloud computing has been effectively proven to improve the controlling, monitoring, and care quality of Coronavirus disease 2019 (COVID-19) patients. One of the convenient approaches to assess symptomatic patients is to group patients with comparable symptoms and provide an overview of the required level of care to patients with similar conditions. Therefore, this study adopts an effective hierarchal IoMTs computing with K-Efficient clustering to control and forecast COVID-19 cases. The proposed system integrates the K-Means and K-Medoids clusterings to monitor the health status of patients, early detection of COVID-19 cases, and process data in real-time with ultra-low latency. In addition, the data analysis takes into account the primary requirements of the network to assist in understanding the nature of COVID-19. Based on the findings, the K-Efficient clustering with fog computing is a more effective approach to analyse the status of patients compared to that of K-Means and K-Medoids in terms of intra-class, inter-class, running time, the latency of network, and RAM consumption. In summary, the outcome of this study provides a novel approach for remote monitoring and handling of infected COVID-19 patients through real-time personalised treatment services.
An AI-based disease detection and prevention scheme for COVID-19
The proliferating outbreak of COVID-19 raises global health concerns and has brought many countries to a standstill. Several restrain strategies are imposed to suppress and flatten the mortality curve, such as lockdowns, quarantines, etc. Artificial Intelligence (AI) techniques could be a promising solution to leverage these restraint strategies. However, real-time decision-making necessitates a cloud-oriented AI solution to control the pandemic. Though many cloud-oriented solutions exist, they have not been fully exploited for real-time data accessibility and high prediction accuracy. Motivated by these facts, this paper proposes a cloud-oriented AI-based scheme referred to as (i.e., Disease-espy) for disease detection and prevention. The proposed scheme performs a comparative analysis between Autoregressive Integrated Moving Average (ARIMA), Vanilla Long Short Term Memory (LSTM), and Stacked LSTM techniques, which signify the dominance of Stacked LSTM in terms of prediction accuracy. Then, a Medical Resource Distribution (MRD) mechanism is proposed for the optimal distribution of medical resources. Next, a three-phase analysis of the COVID-19 spread is presented, which can benefit the governing bodies in deciding lockdown relaxation. Results show the efficacy of the scheme concerning 96.2% of prediction accuracy compared to the existing approaches.
Chest X ray and cough sample based deep learning framework for accurate diagnosis of COVID-19
All witnessed the terrible effects of the COVID-19 pandemic on the health and work lives of the population across the world. It is hard to diagnose all infected people in real time since the conventional medical diagnosis of COVID-19 patients takes a couple of days for accurate diagnosis results. In this paper, a novel learning framework is proposed for the early diagnosis of COVID-19 patients using hybrid deep fusion learning models. The proposed framework performs early classification of patients based on collected samples of chest X-ray images and Coswara cough (sound) samples of possibly infected people. The captured cough samples are pre-processed using speech signal processing techniques and Mel frequency cepstral coefficient features are extracted using deep convolutional neural networks. Finally, the proposed system fuses extracted features to provide 98.70% and 82.7% based on Chest-X ray images and cough (audio) samples for early diagnosis using the weighted sum-rule fusion method.
Ensemble multimodal deep learning for early diagnosis and accurate classification of COVID-19
Over the past few years, the awful COVID-19 pandemic effect has become a lethal sickness. The processing of the gathered samples requires extra time due to the use of medical diagnostic equipment, methodologies, and clinical testing procedures for the early diagnosis of infected individuals. An innovative multimodal paradigm for the early diagnosis and precise categorization of COVID-19 is put up as a solution to this issue. To extract distinguishing features from the prepared chest X-ray picture and cough (audio) database, chest X-ray-based and cough-based model are used here. Other public chest X-ray image datasets, and the Coswara cough (audio) dataset containing 92 COVID-19 positive, and 1079 healthy subjects (people) using the deep Uniform-Net, and Convolutional Neural Network (CNN). The weighted sum-rule fusion method and ensemble deep learning algorithms are utilized to further combine the extracted features. For the early diagnosis of patients, the framework offers an accuracy of 98.67%.
LMNet: Lightweight multi-scale convolutional neural network architecture for COVID-19 detection in IoMT environment
The COVID-19 disease, initially known as SARS-CoV-2, was first reported in early December 2019 and has caused immense damage to humans globally. The most widely used clinical screening method for COVID-19 is Reverse Transcription Polymerase Chain Reaction (RT-PCR). RT-PCR uses respiratory samples for testing, because of which, this manual technique becomes complicated, laborious and time-consuming. Even though it has a low sensitivity, it carries a considerable risk for the testing medical staff. Hence, there is a need for an automated diagnosis system that can provide quick and efficient diagnosis results. This research proposed a multi-scale lightweight CNN (LMNet) architecture for COVID-19 detection. The proposed model is computationally less expensive than previously available models and requires less memory space. The performance of the proposed LMNet model ensemble with DenseNet169 and MobileNetV2 is higher than the other state-of-the-art models. The ensemble model can be integrated at the backend of the smart devices; hence it is useful for the Internet of Medical Things (IoMT) environment.
A novel deep fusion strategy for COVID-19 prediction using multimodality approach
Over the last two years, the novel coronavirus has become a significant threat to the health of the public, and numerous approaches are developed to determine the symptoms of COVID-19. To deal with the complex symptoms of COVID-19, a Deep Learning-assisted Multi-modal Data Analysis (DMDA) approach is introduced to determine COVID-19 symptoms by utilizing acoustic and image-based data. Furthermore, the classified events are forwarded to the proposed Dynamic Fusion Strategy (DFS) for confirming the health status of the individual. Initially, the performance of the proposed solution is evaluated on both acoustic and image-based samples and the proposed solution attains the maximum accuracy of 96.88% and 98.76%, respectively. Similarly, the DFS has achieved an overall symptom determination accuracy of 98.72% which is highly acceptable for decision-making. Moreover, the proposed solution shows high reliability with an accuracy of 95.64% even in absence of any one of the data modalities during testing.
An intuitionistic fuzzy decision support system for COVID-19 lockdown relaxation protocols in India
In January 2020, the World Health Organization (WHO) identified a world-threatening virus, SARS-CoV-2. To diminish the virus spread rate, India implemented a six-month-long lockdown. During this period, the Indian government lifted certain restrictions. Therefore, this study investigates the efficacy of India's lockdown relaxation protocols using fuzzy decision-making. The decision-making trial and evaluation laboratory (DEMATEL) is one of the fuzzy MCDM methods. When it is associated with intuitionistic fuzzy circumstances, it is known as the intuitionistic fuzzy DEMATEL (IF-DEMATEL) method. Moreover, converting intuitionistic fuzzy into a crisp score (CIFCS) algorithm is an aggregation technique utilized for the intuitionistic fuzzy set. By using IF-DEMATEL and CIFCS, the most efficient lockdown relaxation protocols for COVID-19 are determined. It also provides the cause and effect relationship of the lockdown relaxation protocols. Additionally, the comparative study is carried out through various DEMATEL methods to see the effectiveness of the result. The findings would be helpful to the government's decision-making process in the fight against the pandemic.
Using honeypots to model botnet attacks on the internet of medical things
Corona Virus Disease 2019 (COVID-19) has led to an increase in attacks targeting widespread smart devices. A vulnerable device can join multiple botnets simultaneously or sequentially. When different attack patterns are mixed with attack records, the security analyst produces an inaccurate report. There are numerous studies on botnet detection, but there is no publicly available solution to classify attack patterns based on the control periods. To fill this gap, we propose a novel data-driven method based on an intuitive hypothesis: bots tend to show time-related attack patterns within the same botnet control period. We deploy 462 honeypots in 22 countries to capture real-world attack activities and propose an algorithm to identify control periods. Experiments have demonstrated our method's efficacy. Besides, we present eight interesting findings that will help the security community better understand and fight botnet attacks now and in the future.
Automatic illness prediction system through speech
Due to the COVID-19 epidemic and the curfew caused by it, many people have sought to find an ADPS on the internet in the last few years. This hints to a new age of medical treatment, all the more so if the number of internet users continues to expand. As a result, automatic illness prediction online applications have attracted the interest of a large number of researchers worldwide. This work aims to develop and implement an automated illness prediction system based on speech. The system will be designed to forecast the sort of ailment a patient is suffering from based on his voice, but this was not feasible during the trial, therefore the diseases were divided into three categories (painful, light pain and psychological pain), and then the diagnose process were implemented accordingly. The medical dataset named "speech, transcription, and intent" served as the baseline for this study. The smoothness, MFCC, and SCV properties were used in this work, which demonstrated their high representation to human being medical situations. The noise reduction forward-backward filter was used to eliminate noise from wave files captured online in order to account for the high level of noise seen in the deployed dataset. For this study, a hybrid feature selection method was created and built that combined the output of a genetic algorithm (GA) with the inputs of a NN algorithm. Classification was performed using SVM, neural network, and GMM. The greatest results obtained were 94.55% illness classification accuracy in terms of SVM. The results showed that diagnosing illness through speech is a difficult process, especially when diagnosing each type of illness separately, but when grouping the different illness types into groups, depending on the amount of pain and the psychological situation of the patient, the results were much higher.
Designing evaluation framework for the empirical assessment of COVID-19 mobile apps in Pakistan
The significant proliferation in the mobile health applications (Apps) amidst Coronaviruses disease 2019 (COVID-19) resulted in decision making problems for healthcare professionals, decision makers and mobile users in Pakistan. This decision making process is also hampered by mobile app trade-offs, multiple features support, evolving healthcare needs and varying vendors. In this regard, evaluation model for mobile apps is presented which completes in three different phases. In first phase, features-based criteria is designed by leveraging Delphi method, and twenty (20) mobile apps are selected from app stores. In second stage, empirical evaluation is performed by using hybrid multi criteria decision approaches like CRiteria Importance Through Inter-criteria Correlation (CRITIC) method has been used for assigning weights to criteria features; and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method has been used for assessment of mobile app alternatives. In last step, decision making is performed to select the best mobile app for COVID-19 situations. The results suggest that proposed model can be adopted as a guideline by mobile app subscribers, patients and healthcare professionals.
Improving performance of classifiers for diagnosis of critical diseases to prevent COVID risk
The risk of developing COVID-19 and its variants may be higher in those with pre-existing health conditions such as thyroid disease, Hepatitis C Virus (HCV), breast tissue disease, chronic dermatitis, and other severe infections. Early and precise identification of these disorders is critical. A huge number of patients in nations like India require early and rapid testing as a preventative measure. The problem of imbalance arises from the skewed nature of data in which the instances from majority class are classified correct, while the minority class is unfortunately misclassified by many classifiers. When it comes to human life, this kind of misclassification is unacceptable. To solve the misclassification issue and improve accuracy in such datasets, we applied a variety of data balancing techniques to several machine learning algorithms. The outcomes are encouraging, with a considerable increase in accuracy. As an outcome of these proper diagnoses, we can make plans and take the required actions to stop patients from acquiring serious health issues or viral infections.
Applications of cognitive internet of medical things in modern healthcare
The sudden outbreak of the novel coronavirus disease in 2019, known as COVID-19 has impacted the entire globe and has forced governments of various countries to a partial or full lockdown in the fear of the rapid spread of this disease. The major lesson learned from this pandemic is that there is a need to implement a robust system by using non-pharmaceutical interventions for the prevention and control of new contagious viruses. This goal can be achieved using the platform of the Internet of Things (IoT) because of its seamless connectivity and ubiquitous sensing ability. This technology-enabled healthcare sector is helpful to monitor COVID-19 patients properly by adopting an interconnected network. IoT is useful for improving patient satisfaction by reducing the rate of readmission in the hospital. The presented work discusses the applications and technologies of IoT like smart and wearable devices, drones, and robots which are used in healthcare systems to tackle the Coronavirus pandemic This paper focuses on applications of cognitive radio-based IoT for medical applications, which is referred to as "Cognitive Internet of Medical Things" (CIoMT). CIoMT is a disruptive and promising technology for dynamic monitoring, tracking, rapid diagnosis, and control of pandemics and to stop the spread of the virus. This paper explores the role of the CIoMT in the health domain, especially during pandemics, and also discusses the associated challenges and research directions.
SQEIR: An epidemic virus spread analysis and prediction model
In 2019, a new strain of coronavirus pneumonia spread quickly worldwide. Viral propagation may be simulated using the Susceptible Infectious Removed (SIR) model. However, the SIR model fails to consider that separation of patients in the COVID-19 incubation stage entails difficulty and that these patients have high transmission potential. The model also ignores the positive effect of quarantine measures on the spread of the epidemic. To address the two flaws in the SIR model, this study proposes a new infectious disease model referred to as the Susceptible Quarantined Exposed Infective Removed (SQEIR) model. The proposed model uses the weighted least squares for the optimal estimation of important parameters in the infectious disease model. Based on these parameters, new differential equations were developed to describe the spread of the epidemic. The experimental results show that this model exhibits an accuracy 6.7% higher than that of traditional infectious disease models.
Autonomous service for managing real time notification in detection of COVID-19 virus
In today's world, the most prominent public issue in the field of medicine is the rapid spread of viral sickness. The seriousness of the disease lies in its fast spreading nature. The main aim of the study is the proposal of a framework for the earlier detection and forecasting of the COVID-19 virus infection amongst the people to avoid the spread of the disease across the world by undertaking the precautionary measures. According to this framework, there are four stages for the proposed work. This includes the collection of necessary data followed by the classification of the collected information which is then taken in the process of mining and extraction and eventually ending with the process of decision modelling. Since the frequency of the infection is very often a prescient one, the probabilistic examination is measured as a degree of membership characterised by the fever measure related to the same. The predictions are thereby realised using the temporal RNN. The model finally provides effective outcomes in the efficiency of classification, reliability, the prediction viability etc.
A secure energy-efficient routing protocol for disease data transmission using IoMT
The outlook of the World toward health infrastructure has drastically changed due to COVID-19 which created the need for the development of emerging technologies where interactions between the patients and the health workers can be minimized. Consequently, a secure and energy-efficient internet of medical things (IoMT) enabled wireless sensor network (WSN) is proposed for communicable infectious diseases that utilizes genetic algorithm. The proposed system makes use of movable sinks in IoT-enabled WSNs for healthcare called OptiGeA. The OptiGeA protocol is depicted for cluster heads (CHs) election by joining the factor of energy, density, distance, and heterogeneous node's capacity for fitness function. Additionally, a novel deployment technique and multiple mobile sink approaches are proposed to reduce transmission distance between sink and CH during system operation which mitigates hotspot issues. It is evident from the simulations that the OptiGeA protocol outflanks state-of-the-art protocols in terms of different performance measurements.