Astrocytes initiate autophagic flux and maintain cell viability after internalizing non-active native extracellular α-synuclein
Astrocytes are tasked with regulating the synaptic environment. Early stages of various neurodegenerative diseases are characterized by synapse loss, and astrocytic atrophy and dysfunction has been proposed as a possible cause. α-Synuclein (αS) is a highly expressed neuronal protein located in the synapse that can be released in the extracellular space. Evidence points to astrocytes as being responsible for uptake and degradation of extracellular αS. Therefore, misfolded active fibrillized αS resulting in protein inclusions and aggregates could be due to astrocytic dysfunction. Despite these pathological hallmarks and lines of evidence, the autophagic function of astrocytes in response to monomeric non-active αS to model healthy conditions has not been investigated. Human primary cortical astrocytes were treated with 100 nM of extracellular monomeric non-active αS alone, and in combination with N-terminal binding monomeric γ-synuclein (γS) as a control. Western blot analysis and super resolution imaging of HiLyte-488 labeled αS confirmed successful internalization of αS at 12, 24 and 48 h after treatment, while αS dimers were only observed at 48 h. Western blot analysis also confirmed αS's ability to induce autophagic flux by 48 h. Annexin V/PI flow cytometry results revealed increased early apoptosis at 24 h, but which resolved itself by 48 h, indicating no cell death in cortical astrocytes at all time points, suggesting astrocytes can manage the protein degradation demand of monomeric αS in healthy physiological conditions. Likewise, astrocytes reduced secretion of apolipoprotein (ApoE), a protein involved in pro-inflammatory pathways, synapse regulation, and autophagy by 12 h. Similarly, total c-JUN protein levels, a transcription factor involved in pro-inflammatory pathways increased by 12 h in the nuclear fraction. Therefore, astrocytes are able to respond and degrade αS in healthy physiological conditions, and astrocyte dysfunction could precede detrimental αS accumulation.
Inhibition of phosphodiesterase 10A mitigates neuronal injury by modulating apoptotic pathways in cold-induced traumatic brain injury
Brain injury develops from a complex series of pathophysiological phases, resulting in acute necrotic or delayed apoptotic cell death after traumatic brain injury (TBI). Inhibition of apoptotic cell death is critical for the treatment of acute neurodegenerative disorders, such as TBI. Here, we investigated the role of phosphodiesterase 10A (PDE10A) in the development of neuronal injury, particularly in apoptotic cell death. Using the PDE10A inhibitor TAK-063, we found that PDE10A inhibition is associated with decreased brain injury, brain swelling, and blood brain barrier disruption 48 h after cold-induced TBI. Furthermore, a particularly notable result was observed with 3 mg/kg TAK-063, which reduced disseminated neuronal injury. Protein abundance analysis revealed that PDE10A inhibition activates survival kinases AKT and ERK-1/-2, which were associated with the decreased activation of MMP-9 and PTEN. Additionally, iNOS and nNOS levels significantly reduced in the TAK-063 group, playing roles in inflammation and apoptosis. A planar surface immunoassay was performed for in-depth analyses of the apoptotic signaling pathways. We observed that inhibition of PDE10A resulted in the decreased expression of TNFRSF1A, TNFRSF10B, and TNFRSF6 receptors, particularly inducing apoptotic cell death. Moreover, these findings correlated with reduced levels of pro-apoptotic proteins, including PTEN, p27, Cytochrome-c, cleaved Caspase-3, Bad, and p53. Interestingly, TAK-063 treatment reduced levels of anti-apoptotic proteins or enzymes, including XIAP, Claspin, and HIF1α, without affecting Bcl-x, MCL-1, SMAC, HO-1, HO-2, HSP27, HSP60, and HSP70. The findings suggest that PDE10A regulates cellular signaling predominantly pro-apoptotic pathways, and inhibition of this protein is a promising approach for the treatment of acute brain injury.
Vulnerability of neurofilament-expressing neurons in frontotemporal dementia
Frontotemporal dementia (FTD) is an umbrella term for several early onset dementias, that are caused by frontotemporal lobar degeneration (FTLD), which involves the atrophy of the frontal and temporal lobes of the brain. Neuron loss in the frontal and temporal lobes is a characteristic feature of FTLD, however the selective vulnerability of different neuronal populations in this group of diseases is not fully understood. Neurofilament-expressing neurons have been shown to be selectively vulnerable in other neurodegenerative diseases, including Alzheimer's disease and amyotrophic lateral sclerosis, therefore we sought to investigate whether this neuronal population is vulnerable in FTLD. We also examined whether neuronal sub-type vulnerability differed between FTLD with TDP-43 inclusions (FTLD-TDP) and FTLD with tau inclusions (FTLD-Tau). Post-mortem human tissue from the superior frontal gyrus (SFG) of FTLD-TDP (n = 15), FTLD-Tau (n = 8) and aged Control cases (n = 6) was immunolabelled using antibodies against non-phosphorylated neurofilaments (SMI32 antibody), calretinin and NeuN, to explore neuronal cell loss. The presence of non-phosphorylated neurofilament immunolabelling in axons of the SFG white matter was also quantified as a measure of axon pathology, as axonal neurofilaments are normally phosphorylated. We demonstrate the selective loss of neurofilament-expressing neurons in both FTLD-TDP and FTLD-Tau cases compared to aged Controls. We also show that non-phosphorylated neurofilament axonal pathology in the SFG white matter was associated with increasing age, but not FTLD. This data suggests neurofilament-expressing neurons are vulnerable in both FTLD-TDP and FTLD-Tau.
TAT-PPA1 protects against oxidative stress-induced loss of dopaminergic neurons
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN) of the midbrain, resulting in severe motor impairments. Inorganic pyrophosphatase 1 (PPA1) plays a key role in various biological processes, and this study introduces a cell-penetrating PPA1 fusion protein (TAT-PPA1) to explore its transduction into cells and brain tissues. TAT-PPA1 effectively penetrates SH-SY5Y cells and the SN region of PD animal models without toxicity, exhibiting protective effects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP-)-induced cell death. TAT-PPA1 revealed an inhibitory influence on the MAPK signaling pathway and MPTP-induced reactive oxygen species (ROS) production. TAT-PPA1 suppresses JNK, AKT, p53, ERK, and p38 phosphorylation, showcasing its multifaceted role in cell survival pathways. In the MPTP-induced PD animal model, TAT-PPA1 prevents dopaminergic cell death and enhances motor function. This study shows that TAT-PPA1 protects against oxidative stress and cell death in neurodegenerative diseases, suggesting potential as a PD treatment.
Transcriptomic changes in the hypothalamus of mice with chronic migraine: Activation of pathways associated with neuropathic inflammation and central sensitization
Chronic migraine is a common central nervous system disorder characterized by recurrent, pulsating headaches. However, the extent and mechanisms of hypothalamic involvement in disease progression have not been thoroughly investigated. Herein, we created a chronic migraine mouse model using repeated intraperitoneal injections of nitroglycerin. We performed transcriptomic sequencing on the hypothalamus of mice with chronic migraine and control mice under normal physiological conditions, followed by differential gene set enrichment and functional analysis of the data. Additionally, we examined the intrinsic connection between chronic migraine and sleep disorders using transcriptomic sequencing data from sleep-deprived mice available in public databases. We identified 39 differentially expressed genes (DEGs) in the hypothalamus of a mouse model of chronic migraine. Functional analysis of DEGs revealed enrichment primarily in signaling transduction, immune-inflammatory responses, and the cellular microenvironment. A comparison of the transcriptomic data of sleep-deprived mice revealed two commonly expressed DEGs. Our findings indicate that the hypothalamic DEGs are primarily enriched in the PI3K/AKT/mTOR pathway and associated with the NF-κB/NLRP3/IL-1 β pathway activation to maintain the central sensitization of the chronic migraine. Chronic migraine-induced gene expression changes in the hypothalamus may help better understand the underlying mechanisms and identify therapeutic targets.
SUMOylation modulates mitochondrial dynamics in an in vitro rotenone model of Parkinson's disease
SUMOylation is a post-translational modification essential for various biological processes. SUMO proteins bind to target substrates in a three-step enzymatic pathway, which is rapidly reversible by the action of specific proteases, known as SENPs. Studies have shown that SUMOylation is dysregulated in several human disorders, including neurodegenerative diseases that are characterized by the progressive loss of neurons, mitochondrial dysfunction, deficits in autophagy, and oxidative stress. Considering the potential neuroprotective roles of SUMOylation, the aim of this study was to investigate the effects of SENP3 knockdown in H4 neuroglioma cells exposed to rotenone, an in vitro model of cytotoxicity that mimics dopaminergic loss in Parkinson's disease (PD). The current data show that SENP3 knockdown increases SUMO-2/3 conjugates, which is accompanied by reduced levels of the mitochondrial fission protein Drp1 and increased levels of the mitochondrial fusion protein OPA1. Of high interest, SENP3 knockdown prevented rotenone-induced superoxide production and cellular death. Taken together, these findings highlight the importance of SUMOylation in maintaining mitochondrial homeostasis and the neuroprotective potential of this modification in PD.
Knockdown of BMP7 induced oligodendrocyte apoptosis, demyelination and motor function loss
Demyelinating diseases, including multiple sclerosis (MS) and spinal cord injury (SCI), lead to significant neurological deficits primarily due to the loss of oligodendrocytes (OLs). Bone Morphogenetic Protein 7 (BMP7) is expressed abundantly in the central nervous system and previous studies showed its protective effect in reducing OL loss. In this study, we aim to explore BMP7's potential as a biomarker and therapeutic target for demyelinating diseases by investigating its expression and effects on OLs and myelin sheath integrity.
The neuroprotective effect of short-chain fatty acids against hypoxia-reperfusion injury
Gut microbe-derived short-chain fatty acids (SCFAs) are known to have a profound impact on various brain functions, including cognition, mood, and overall neurological health. However, their role, if any, in protecting against hypoxic injury and ischemic stroke has not been extensively studied. In this study, we investigated the effects of two major SCFAs abundant in the gut, propionate (P) and butyrate (B), on hypoxia-reperfusion injury using a neuronal cell line and a zebrafish model. Neuro 2a (N2a) cells treated with P and B exhibited reduced levels of mitochondrial and cytosolic reactive oxygen species (ROS), diminished loss of mitochondrial membrane potential, suppressed caspase activation, and lower rates of cell death when exposed to CoCl, a chemical commonly used to simulate hypoxia. Furthermore, adult zebrafish fed SCFA-supplemented feeds showed less susceptibility to hypoxic conditions compared to the control group, as indicated by multiple behavioral measures. Histological analysis of 2,3,5-Triphenyltetrazolium chloride (TTC) stained brain sections revealed less damage in the SCFA-fed group. We also found that Fatty Acid Binding Protein 7 (FABP7), also known as Brain Lipid Binding Protein (BLBP), a neuroprotective fatty acid binding protein, was upregulated in the brains of the SCFA-fed group. Additionally, when FABP7 was overexpressed in N2a cells, it protected the cells from injury caused by CoCl treatment. Overall, our data provide evidence for a neuroprotective role of P and B against hypoxic brain injury and suggest the potential of dietary supplementation with SCFAs to mitigate stroke-induced brain damage.
Interneurons in the CA1 stratum oriens expressing αTTP may play a role in the delayed-ageing Pol μ mouse model
Neurodegeneration associated with ageing is closely linked to oxidative stress (OS) and disrupted calcium homeostasis. Some areas of the brain, like the hippocampus - particularly the CA1 region - have shown a high susceptibility to age-related changes, displaying early signs of pathology and neuronal loss. Antioxidants such as α-tocopherol (αT) have been effective in mitigating the impact of OS during ageing. αT homeostasis is primarily regulated by the α-tocopherol transfer protein (αTTP), which is widely distributed throughout the brain - where it plays a crucial role in maintaining αT levels within neuronal cells. This study investigates the distribution of αTTP in the hippocampus of 4- and 24-month-old Pol μ knockout mice (Pol μ), a delayed-ageing model, and the wild type (Pol μ). We also examine the colocalisation in the stratum oriens (st.or) of CA1 region with the primary interneuron populations expressing calcium-binding proteins (CBPs) (calbindin (CB), parvalbumin (PV), and calretinin (CR)). Our findings reveal that αTTP immunoreactivity (-IR) in the st.or of Pol μ mice is significantly reduced. The density of PV-expressing interneurons (INs) increased in aged mice in both Pol μ genotypes (Pol μ and Pol μ), although the density of PV-positive INs was lower in the aged Pol μ mice compared to wild-type mice. By contrast, CR- and CB-positive INs in Pol μ mice remained unchanged during ageing. Furthermore, double immunohistochemistry reveals the colocalisation of αTTP with CBPs in INs of the CA1 st.or. Our study also shows that the PV/αTTP-positive IN population remains unchanged in all groups. A significant decrease of CB/αTTP-positive INs in young Pol μ mice has been detected, as well as a significant increase in CR/αTTP-IR in older Pol μ animals. These results suggest that the differential expression of αTTP and CBPs could have a crucial effect in aiding the survival and maintenance of the different IN populations in the CA1 st.or, and their coexpression could contribute to the enhancement of their resistance to OS-related damage and neurodegeneration associated with ageing.
Disease modifying effects of the amyloid-beta protofibril-selective antibody mAb158 in aged Tg2576 transgenic mice
Amyloid beta (Aβ) peptides, which aggregate to form neocortical plaques in Alzheimer's disease, exist in states that range from soluble monomers and oligomers/protofibrils to insoluble fibrillar amyloid. The present study evaluated the effects of mAb158, a mouse monoclonal antibody version of lecanemab that preferentially binds to soluble Aβ protofibrils, in aged transgenic mice (Tg2576) with Aβ pathology. Female Tg2576 mice (12 months old) received weekly intraperitoneal mAb158 (35 mg/kg) or vehicle for 4 weeks or for 18 weeks, with or without a subsequent 12-week off-treatment period. Aβ protofibril levels were significantly lower in mAb158-treated animals at both 4 and 18 weeks, while longer treatment duration (18 weeks) was required to observe significantly lower Aβ42 levels in insoluble brain fractions and lower Aβ plaque load. Following the off-treatment period, comparison of the vehicle- and mAb158-treated mice demonstrated that the Aβ protofibril levels, insoluble Aβ42 levels and Aβ plaque load remained significantly lower in mAb158-treated animals, as compared with age-matched controls. However, there was a significant increase of brain accumulation of both the Aβ protofibril levels, insoluble Aβ42 levels and Aβ plaque load after treatment cessation. Thus, repeated mAb158 treatment of aged Tg2576 mice first reduced Aβ protofibril levels within 4 weeks of treatment, which then was followed by a reduction of amyloid plaque pathology within 18 weeks of treatment. These effects were maintained 12 weeks after the final dose, indicating that mAb158 had a disease-modifying effect on the Aβ pathology in this mouse model. In addition, brain accumulation of both Aβ protofibril levels and amyloid pathology progressed after discontinuation of the treatment which supports the importance of continued treatment with mAb158 to maintain the effects on Aβ pathology.
Lecanemab demonstrates highly selective binding to Aβ protofibrils isolated from Alzheimer's disease brains
Recent advances in immunotherapeutic approaches to the treatment of Alzheimer's disease (AD) have increased the importance of understanding the exact binding preference of each amyloid-beta (Aβ) antibody employed, since this determines both efficacy and risk for potentially serious adverse events known as amyloid-related imaging abnormalities. Lecanemab is a humanized IgG1 antibody that was developed to target the soluble Aβ protofibril conformation. The present study prepared extracts of post mortem brain samples from AD patients and non-demented elderly controls, characterized the forms of Aβ present, and investigated their interactions with lecanemab. Brain tissue samples were homogenized and extracted using tris-buffered saline. Aβ levels and aggregation states in soluble and insoluble extracts, and in fractions prepared using size-exclusion chromatography or density gradient ultracentrifugation, were analyzed using combinations of immunoassay, immunoprecipitation (IP), and mass spectrometry. Lecanemab immunohistochemistry was also conducted in temporal cortex. The majority of temporal cortex Aβ (98 %) was in the insoluble extract. Aβ42 was the most abundant form present, particularly in AD subjects, and most soluble Aβ42 was in soluble aggregated protofibrillar structures. Aβ protofibril levels were much higher in AD subjects than in controls. Protofibrils captured by lecanemab-IP contained high levels of Aβ42 and lecanemab bound to large, medium, and small Aβ42 protofibrils in a concentration-dependent manner. Competitive IP showed that neither Aβ40 monomers nor Aβ40-enriched fibrils isolated from cerebral amyloid angiopathy reduced lecanemab's binding to Aβ42 protofibrils. Immunohistochemistry showed that lecanemab bound readily to Aβ plaques (diffuse and compact) and to intraneuronal Aβ in AD temporal cortex. Taken together, these findings indicate that while lecanemab binds to Aβ plaques, it preferentially targets soluble aggregated Aβ protofibrils. These are largely composed of Aβ42, and lecanemab binds less readily to the Aβ40-enriched fibrils found in the cerebral vasculature. This is a promising binding profile because Aβ42 protofibrils represent a key therapeutic target in AD, while a lack of binding to monomeric Aβ and cerebral amyloid deposits should reduce peripheral antibody sequestration and minimize risk for adverse events.
Cannabinoid receptor 2 agonist AM1241 alleviates epileptic seizures and epilepsy-associated depression via inhibiting neuroinflammation in a pilocarpine-induced chronic epilepsy mouse model
Increasing evidence suggests that cannabinoid receptor 2 (CBR) serves as a promising anti-inflammatory target. While inflammation is known to play crucial roles in the pathogenesis of epilepsy, the involvement of CBR in epilepsy remains unclear. This study aimed to investigate the effects of a CBR agonist, AM1241, on epileptic seizures and depressive-like behaviors in a mouse model of chronic epilepsy induced by pilocarpine. A chronic epilepsy mouse model was established by intraperitoneal administration of pilocarpine. The endogenous cannabinoid system (eCBs) in the hippocampus was examined after status epilepticus (SE). Animals were then treated with AM1241 and compared with a vehicle-treated control group. Additionally, the role of the AMPK/NLRP3 signaling pathway was explored using the selective AMPK inhibitor dorsomorphin. Following SE, CBR expression increased significantly in hippocampal microglia. Administration of AM1241 significantly reduced seizure frequency, immobility time in the tail suspension test, and neuronal loss in the hippocampus. In addition, AM1241 treatment attenuated microglial activation, inhibited pro-inflammatory polarization of microglia, and suppressed NLRP3 inflammasome activation in the hippocampus after SE. Further, the therapeutic effects of AM1241 were abolished by the AMPK inhibitor dorsomorphin. Our findings suggest that CBR agonist AM1241 may alleviate epileptic seizures and its associated depression by inhibiting neuroinflammation through the AMPK/NLRP3 signaling pathway. These results provide insight into a novel therapeutic approach for epilepsy.
Ionic mechanisms involved in arginine vasopressin-mediated excitation of auditory cortical and thalamic neurons
The axons containing arginine vasopressin (AVP) from the hypothalamus innervate a variety of structures including the cerebral cortex, thalamus, hippocampus and amygdala. A plethora amount of evidence indicates that activation of the V subtype of the vasopressin receptors facilitates anxiety-like and fear responses. As an essential structure involved in fear and anxiety responses, the amygdala, especially the lateral nucleus of amygdala (LA), receives glutamatergic innervations from the auditory cortex and auditory thalamus where high density of V receptors have been detected. However, the roles and mechanisms of AVP in these two important areas have not been determined, which prevents the understanding of the mechanisms whereby V activation augments anxiety and fear responses. Here, we used coronal brain slices and studied the effects of AVP on neuronal activities of the auditory cortical and thalamic neurons. Our results indicate that activation of V receptors excited both auditory cortical and thalamic neurons. In the auditory cortical neurons, AVP increased neuronal excitability by depressing multiple subtypes of inwardly rectifying K (Kir) channels including the Kir2 subfamily, the ATP-sensitive K channels and the G protein-gated inwardly rectifying K (GIRK) channels, whereas activation of V receptors excited the auditory thalamic neurons by depressing the Kir2 subfamily of the Kir channels as well as activating the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and a persistent Na channel. Our results may help explain the roles of V receptors in facilitating fear and anxiety responses. Categories: Cell Physiology.
Sphingosine kinase 2 regulates protein ubiquitination networks in neurons
Two sphingosine kinase isoforms, sphingosine kinase 1 (SPHK1) and sphingosine kinase 2 (SPHK2), synthesize the lipid sphingosine-1-phosphate (S1P) by phosphorylating sphingosine. SPHK1 is a cytoplasmic kinase, and SPHK2 is localized to the nucleus and other organelles. In the cytoplasm, the SPHK1/S1P pathway modulates autophagy and protein ubiquitination, among other processes. In the nucleus, the SPHK2/S1P pathway regulates transcription. Here, we hypothesized that the SPHK2/S1P pathway governs protein ubiquitination in neurons. We found that ectopic expression of SPHK2 increases ubiquitinated substrate levels in cultured neurons and pharmacologically inhibiting SPHK2 decreases protein ubiquitination. With mass spectrometry, we discovered that inhibiting SPHK2 affects lipid and synaptic protein networks as well as a ubiquitin-dependent protein network. Several ubiquitin-conjugating and hydrolyzing proteins, such as the E3 ubiquitin-protein ligases HUWE1 and TRIP12, the E2 ubiquitin-conjugating enzyme UBE2Z, and the ubiquitin-specific proteases USP15 and USP30, were downregulated by SPHK2 inhibition. Using RNA sequencing, we found that inhibiting SPHK2 altered lipid and neuron-specific gene networks, among others. Genes that encode the corresponding proteins from the ubiquitin-dependent protein network that we discovered with mass spectrometry were not affected by inhibiting SPHK2, indicating that the SPHK2/S1P pathway regulates ubiquitination at the protein level. We also show that both SPHK2 and HUWE1 were upregulated in the striatum of a mouse model of Huntington's disease, the BACHD mice, indicating that our findings are relevant to neurodegenerative diseases. Our results identify SPHK2/S1P as a novel regulator of protein ubiquitination networks in neurons and provide a new target for developing therapies for neurodegenerative diseases.
Activation of angiotensin converting enzyme 2 promotes hippocampal neurogenesis via activation of Wnt/β-catenin signaling in hypertension
Hypertension-induced brain renin-angiotensin system (RAS) activation and neuroinflammation are hallmark neuropathological features of neurodegenerative diseases. Previous studies from our lab have shown that inhibition of ACE/Ang II/AT1R axis (by AT1R blockers or ACE inhibitors) reduced neuroinflammation and accompanied neurodegeneration via up-regulating adult hippocampal neurogenesis. Apart from this conventional axis, another axis of RAS also exists i.e., ACE2/Ang (1-7)/MasR axis, reported as an anti-hypertensive and anti-inflammatory. However, the role of this axis has not been explored in hypertension-induced glial activation and hippocampal neurogenesis in rat models of hypertension. Hence, in the present study, we examined the effect of ACE2 activator, Diminazene aceturate (DIZE) at 2 different doses of 10 mg/kg (non-antihypertensive) and 15 mg/kg (antihypertensive dose) in renovascular hypertensive rats to explore whether their effect on glial activation, neuroinflammation, and neurogenesis is either influenced by blood-pressure. The results of our study revealed that hypertension induced significant glial activation (astrocyte and microglial), neuroinflammation, and impaired hippocampal neurogenesis. However, ACE2 activation by DIZE, even at the low dose prevented these hypertension-induced changes in the brain. Mechanistically, ACE2 activation inhibited Ang II levels, TRAF6-NFκB mediated inflammatory signaling, NOX4-mediated ROS generation, and mitochondrial dysfunction by upregulating ACE2/Ang (1-7)/MasR signaling. Moreover, DIZE-induced activation of the ACE2/Ang (1-7)/MasR axis upregulated Wnt/β-catenin signaling, promoting hippocampal neurogenesis during the hypertensive state. Therefore, our study demonstrates that ACE2 activation can effectively prevent glial activation and enhance hippocampal neurogenesis in hypertensive conditions, regardless of its blood pressure-lowering effects.
Reduced platelet activation and thrombus formation in male transgenic model mice of Alzheimer's disease suggests early sex-specific differences in platelet pathophysiology
Alzheimer's disease (AD) is the most common form of dementia and characterized by extracellular amyloid-β (Aβ) plaques, intracellular neurofibrillary tau tangles and neurodegeneration. Over 80 % of AD patients also exhibit cerebral amyloid angiopathy (CAA). CAA is a cerebrovascular disease caused by deposition of Aβ in the walls of cerebral blood vessels leading to vessel damage and impairment of normal blood flow. To date, different studies suggest that platelet function, including activation, adhesion and aggregation, is altered in AD due to vascular Aβ deposition. For example, the transgenic AD model mice APP23 mice that exhibit CAA and parenchymal Aβ plaques, show pre-activated platelets in the blood circulation and increased platelet integrin activation leading to a pro-thrombotic phenotype in these mice late stages of AD. However, it is still an open question whether or not platelets exhibit changes in their activation profile before they are exposed to vascular Aβ deposits. Therefore, the present study examined platelets from middle-aged transgenic APP23 mice at the age of 8-10 months. At this age, APP23 mice show amyloid plaques in the brain parenchyma but not in the vasculature. Our analyses show that these APP23 mice have unaltered platelet numbers and size, and unaltered surface expression of glycoproteins. However, the number of dense granules in transgenic platelets was increased while the release was unaltered. Male, but not female APP23 mice, exhibited reduced platelet activation after stimulation of the thrombin receptor PAR4 and decreased thrombus stability on collagen under flow conditions ex vivo compared to control mice. In an arterial thrombosis model in vivo, male APP23 mice showed attenuated occlusion of the injured artery compared to controls. These findings provide clear evidence for early changes in platelet activation and thrombus formation in male mice before development of overt CAA. Furthermore, reduced platelet activation and thrombus formation suggest sex-specific differences in platelet physiology in AD that has to be considered in future studies of platelets and their role in AD.
iPSC-induced neurons with the V337M MAPT mutation are selectively vulnerable to caspase-mediated cleavage of tau and apoptotic cell death
Tau post-translational modifications (PTMs) result in the gradual build-up of abnormal tau and neuronal degeneration in tauopathies, encompassing variants of frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). Tau proteolytically cleaved by active caspases, including caspase-6, may be neurotoxic and prone to self-aggregation. Also, our recent findings show that caspase-6 truncated tau represents a frequent and understudied aspect of tau pathology in AD in addition to phospho-tau pathology. In AD and Pick's disease, a large percentage of caspase-6 associated cleaved-tau positive neurons lack phospho-tau, suggesting that many vulnerable neurons to tau pathology go undetected when using conventional phospho-tau antibodies and possibly will not respond to phospho-tau based therapies. Therefore, therapeutic strategies against caspase cleaved-tau pathology could be necessary to modulate the extent of tau abnormalities in AD and other tauopathies.
Corrigendum to "Progress of reprogramming astrocytes into neuron" [Molecular and Cellular Neuroscience, Volume 130, September 2024, 103947, DOI: 10.1016/j.mcn.2024.103947]
β-adrenoceptor agonist formoterol attenuates NLRP3 inflammasome activation and GSDMD-mediated pyroptosis in microglia through enhancing IκBα/NF-κB inhibition, SQSTM1/p62-dependent selective autophagy and ESCRT-III-mediated plasma membrane repair
Microglia are immune cells that play important roles in the formation of the innate immune response within the central nervous system (CNS). The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a multiple protein complex that is crucial for innate immunity, and excessive activation of the inflammasome for various reasons contributes to the pathogenesis of neurodegenerative diseases (NDs). β-adrenoceptor agonists have become the focus of attention in studies on NDs due to the high synthesis of β-adrenoceptors in the central nervous system (CNS). Promising results have been obtained from these studies targeting anti-inflammatory and neuroprotective effects. Formoterol is an effective, safe for long-term use, and FDA-approved β-adrenoceptor agonist with demonstrated anti-inflammatory features in the CNS. In this study, we researched the effects of formoterol on LPS/ATP-stimulated NLRP3 inflammasome activation, pyroptosis, NF-κB, autophagy, and ESCRT-III-mediated plasma membrane repair pathways in the N9 microglia cells. The results showed that formoterol, through the IκBα/NF-κB axis, significantly inhibited NLRP3 inflammasome activation, reduced the level of active caspase-1, secretion of IL-1β and IL-18 proinflammatory cytokine levels, and the levels of pyroptosis. Additionally, we showed that formoterol activates autophagy, autophagosome formation, and ESCRT-III-mediated plasma membrane repair, which are significant pathways in the inhibition of NLRP3 inflammasome activation and pyroptosis. Our study suggests that formoterol efficaciously prevents the NLRP3 inflammasome activation and pyroptosis in microglial cells regulation through IκBα/NF-κB, autophagy, autophagosome formation, and ESCRT-III-mediated plasma membrane repair.
Study on the involvement of microglial S100A8 in neuroinflammation and microglia activation during migraine attacks
Microglia is the primary source of inflammatory factors during migraine attacks. This study aims to investigate the role of microglia related genes (MRGs) in migraine attacks.
β-Hydroxybutyrate enhances astrocyte glutamate uptake through EAAT1 expression regulation
β-Hydroxybutyrate (BHB) has been reported to exert neuroprotective functions and is considered a promising treatment for neurodegenerative diseases such as Parkinson's and Alzheimer's. Numerous studies have revealed BHB's multifaceted roles, including anti-senescence, anti-oxidative, and anti-inflammatory activities. However, the underlying mechanisms warrant further investigation. Astrocytes, the most abundant glial cells in the central nervous system, play a pivotal role in the development and progression of neurodegenerative diseases. While BHB is known to alter neuronal metabolism and function, its effects on astrocytes remain poorly understood. In this study, we conducted transcriptome sequencing analysis to identify differentially expressed genes induced by BHB in astrocytes and found that the gene Solute carrier family 1 member 3 (Slc1a3), encoding the glutamate transporter EAAT1, was significantly upregulated by BHB treatment. Cellular and animal-based experiments confirmed an increase in EAAT1 protein expression in primary astrocytes and the hippocampus of mice treated with BHB. This upregulation may be due to the activation of the Ca/CAMKII pathway by BHB. Furthermore, BHB improved astrocytes' glutamate uptake and partially restored neuronal viability impaired by glutamate-induced excitotoxicity when astrocytes were functionalized. Our results suggest that BHB may alleviate neuronal damage caused by excessive glutamate by enhancing the glutamate absorption and uptake capacity of astrocytes. This study proposes a novel mechanism for the neuroprotective effects of BHB and reinforces its beneficial impact on the central nervous system (CNS).