JOURNAL OF POLYMERS AND THE ENVIRONMENT

Melt Processible Biodegradable Blends of Polyethylene Glycol Plasticized Cellulose Diacetate with Polylactic Acid and Polybutylene Adipate-Co-Terephthalate
Tselana BM, Muniyasamy S, Ojijo VO and Mhike W
Enhancing the melt processability of cellulose is key to broadening its applications. This is done via derivatization of cellulose, and subsequent plasticization and/or blending with other biopolymers, such as polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT). However, derivatization of cellulose tends to reduce its biodegradability. Moreover, traditional plasticizers are non-biodegradable. In this study, we report the influence of polyethylene glycol (PEG) plasticizer on the melt processibility and biodegradability of cellulose diacetate (CD) and its blends with PLA and PBAT. CD was first plasticized with PEG (PEG-200) at 35 wt%, and then blended with PLA and PBAT using a twin-screw extruder. Blends of the PEG plasticized CD with PLA at 40 wt% and with PBAT at 60 wt% were studied in detail. Dynamic mechanical analysis (DMA) showed that PEG reduced the glass transition of the CD from ca. 220 °C to less than 100 °C, indicating effective plasticization. Scanning electron microscopy revealed that the CD/PEG-PBAT blend had a smoother morphology implying some miscibility. The CD/PEG-PBAT blend at 60 wt% PBAT had an elongation-to-break of 734%, whereas the CD/PEG-PLA blend had a tensile strength of 20.6 MPa, comparable to that of the PEG plasticized CD. After a 108-day incubation period under simulated aerobic composting, the CD/PEG-PBAT blend at 60 wt% PBAT exhibited a biodegradation of 41%, whereas that of the CD/PEG-PLA at 40 wt% PLA was 107%. This study showed that melt processible, biodegradable CD blends can be synthesized through plasticization with PEG and blending with PBAT or PLA.
Physicochemical and Structural Evidence that Isolated from the Gut of Waxworms ( Larvae) Biodegrades Polypropylene Efficiently In Vitro
Nyamjav I, Jang Y, Park N, Lee YE and Lee S
Biodegradation of plastic waste using microorganisms has been proposed as one of the solutions to the increasing worldwide plastic waste. Polypropylene (PP) is the second most used plastic used in various industries, and it has been widely used in the production of personal protective equipment such as masks due to the COVID-19 pandemic. Therefore, biodegradation of PP becomes very important. Here, we present results on the physicochemical and structural studies of PP biodegradation by isolated from the gut of the waxworms, larvae. We also studied the biodegradability of PP by the gut microbiota compared with . We analyzed the microbial degradation of the PP surface using scanning electron microscopy and energy - dispersive X-ray spectroscopy and confirmed that the physical and chemical changes were caused by and the gut microbiota. The chemical structural changes were further investigated using X-ray photoelectron microscopy and Fourier - transform - infrared spectroscopy, and it was confirmed that the oxidation of the PP surface proceeded with the formation of carbonyl groups (C=O), ester groups (C-O), and hydroxyl groups (-OH) by . Additionally, the gut microbiota composed of diverse microbial species showed equal oxidation of PP compared to . More importantly, high temperature gel permeation chromatography (HT-GPC) analysis showed that exhibited quantitatively a higher biodegradability of PP compared to the gut microbiota. Our results suggest that possesses a complete set of enzymes required to initiate the oxidation of the carbon chain of PP and will be used to discover new enzymes and genes that are involved in degrading PP.
Weathering Effects on Degradation of Low-Density Polyethylene-Nanosilica Composite with Added Pro-oxidant
Zepp RG, Acrey B, Davis MJB, Andrady AL, Locklin J, Arnold R, Okungbowa O and Commodore A
Nanomaterials are increasingly used in polymer composites to enhance their properties, such as mechanical performance and durability, increased electrical conductivity, and improved optical clarity. Here results are presented of a study simulating effects of weathering on degradation of a nanosilica-low-density polyethylene (LDPE) composite. Release of nanosilica from LDPE composites is a potential source of toxic SiO. Nanosilica based LDPE composites were weathered under carefully controlled conditions by exposure to simulated sunlight. The effects of an added pro-oxidant on weathering was examined. Weathering of the composites with pro-oxidant was determined by quantifying changes in infrared spectroscopic properties (Fourier transform infrared spectroscopy / FTIR); mechanical properties, atomic force microscopy (AFM), scanning electron microscopy and other procedures. Wavelength effects on weathering rates were determined in a series of irradiations using simulated solar radiation passed through light filters that blocked different parts of the ultraviolet spectral region. Rates and spectral irradiance were then analyzed to develop spectral weighting functions (SWFs) that quantify wavelength effects on the sunlight-induced weathering of the pro-oxidant amended composites.
The Effect of Epoxidized Soybean Oil on the Physical and Mechanical Properties of PLA/PBAT/PPC Blends by the Reactive Compatibilization
Choo JE, Park TH, Jeon SM and Hwang SW
Poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT)/poly (propylene carbonate) (PPC) multi-phase blends were prepared by melt processing technique under the presence of compatibilizer with various composition. The effect on the physical and the mechanical property with/without ESO was characterized with spectrophotometric analysis, mechanical properties, thermal properties, rheological properties and barrier properties, and the structure-properties relationship was assessed. ​​The functional groups of PPC were found to effective to improve an interaction with carboxyl/hydroxyl group of PLA/PBAT binary blends to enhance the mechanical and physical properties on multi-phase blend system. The presence of PPC in PLA/PBAT blend affected the reduction of voids on the interface phase resulting in enhancing the oxygen barrier properties. With addition of ESO, the compatibility of ternary blend was found to be enhanced since the epoxy group of ESO reacted with the carboxyl/hydroxyl group of PLA, PBAT, and PPC, and under the condition with critical content of 4 phr of ESO, the elongation behavior dramatically increased as compared to that of blends without ESO while affecting reduction of oxygen barrier properties. The effect of ESO as a compatibilizer was clearly observed from the overall performances of ternary blends, and the potential feasibility of the PLA/PBAT/PPC ternary blends as packaging materials was confirmed at this study.
Adsorption of BSA Protein in Aqueous Medium Using Vegetable Tannin Resin from (Mimosa) and Modified Lignocellulosic Fibers from the Bark of
Duarte DS, Luzardo FHM, Velasco FG, de Almeida ON, Bedon GDRZ, Nascimento GG, Andrade TBV and Salay LC
Proteins are abundant biomolecules found in human cells, as well as pathogenic bacteria and viruses. Some of them become pollutants when released into water. Adsorption is an advantageous method for separating proteins in aqueous media since proteins are already immobilized on solid surfaces. Adsorbents with surfaces rich in tannins are efficient due to their affinity for strong interactions with the various amino acids that make up proteins. This work aimed to develop an adsorbent for protein adsorption in aqueous medium using lignocellulosic materials modified from eucalyptus bark and vegetable tannins. A more efficient resin was prepared containing 10% eucalyptus bark fibers and 90% tannin mimosa by condensation with formaldehyde, and it was characterized by UV-Vis, FTIR-ATR spectroscopy and determinations of degree of swelling, bulk and bulk density and specific mass. For UV-Vis spectroscopy the percentage of condensed and hydrolysable tannins in the extracts of fibers of the dry husks of Eucalyptus Citriodora was estimated and it was also determined your soluble solids. The study of bovine serum albumin (BSA) adsorption was carried out in batch with quantification by UV-Vis spectroscopy. The most efficient prepared resin obtained 71.6 ± 2.78% removal in a solution of 260 mg L of BSA working in a better pH range of the aqueous solution of BSA in its isoelectric point, ~ 5, 32 ± 0.02, under these conditions, the synthesized resin can reach a maximum BSA adsorption capacity of ~ 26.7 ± 0.29 mg g in 7 min. The new synthesized resin presents good prospects for adsorption of proteins or species that in their structure have higher percentages of amino functional groups or amino acids with aliphatic, acidic and/or basic hydrophilic characteristics.
Thermal Stability and Crystallization Behavior of Contaminated Recycled Polypropylene for Food Contact
Veroneze IB, Onoue LA and Cruz SA
Polypropylene is one of the most widely used polymers, especially in the food packaging industry, which causes negative environmental effects. Recycling is a good option to partially solve this environmental problem. Thus, the polymer was contaminated with a cocktail to simulate the conditions of disposal and recycling following FDA guidelines. The influence of contaminants on recycled PP was analyzed by quiescent and nonquiescent crystallization. It was found that the contaminants alter the crystallization flow since longer induction times were observed for all contaminated samples. Also, the thermal behavior was performed considering that the thermogravimetric (TGA) results indicated an increase in the stability with the presence of contaminants. Therefore, a deep investigation using the induced oxidation time and induced oxidation temperature was performed. The contaminants play an important role in the crystallization process, as well as, in the degradation of the samples. Furthermore, the use of TGA and DSC as complementary techniques is fundamental to analyze this influence.
Bio-Degradable Polyesters with Rigid Cyclic Diester from Camphor and Tartaric Acid
Kang JH, Sim SJ, Lee JH, Lee S and Suh DH
Despite their excellent, useful, and stable properties, thermoplastics are constantly subject to environmental risks because of their low degradability under thermal, chemical, and mechanical stresses. To overcome the aforementioned issues, we hereby introduce an eco-friendly camphor (Ct) cyclic diester. The Ct diester is designed as a monomer, including a ketal group from the Ct, and shows high thermal stability via a rigid spiro-ring and a bridged bicyclic structure. A series of polyester was synthesized using the Ct diester, including various types of diols and dimethyl terephthalate. PETxCty copolyesters showed appropriate thermal stability up to 414 °C and a high glass transition temperature. This thermal behavior led to amorphous regions as the Ct diester content increased. Regarding the proportion of the Ct diester in the polyester, it was sensitive to hydrolysis and contributed to the degradation of the polyester in acid buffer conditions.
A Novel Impedimetric Sensor Based on Cyanobacterial Extracellular Polymeric Substances for Microplastics Detection
Gongi W, Touzi H, Sadly I, Ben Ouada H, Tamarin O and Ben Ouada H
Cyanobacterial extracellular polymeric substances "EPS" have attracted intensive concern in biomedicine and food. Nevertheless, the use of those polymers as a sensor coating material has not yet been investigated mainly for microplastic detection. This study focuses on the application of EPS as a sensitive membrane deposited on a gold electrode and investigated with electrochemical impedance spectroscopy to detect four types of microplastics with a size range of 0.1 µm to 1 mm. The surface properties of this impedimetric sensor were investigated by Scanning electron microscopy, Fourier transforms infrared spectroscopy, and X-ray spectroscopy and, showed a high homogenous structure with the presence of several functional groups. The measurements showed a high homogenous structure with the presence of several functional groups. The EPS-based sensor could detect the four tested microplastics with a low limit of detection of 10 M. It is the first report focusing on EPS extracted from cyanobacteria that could be a new quantification method for low concentrations of microplastics.
Preparation and In Vitro Osteogenic Evaluation of Biomimetic Hybrid Nanocomposite Scaffolds Based on Gelatin/Plasma Rich in Growth Factors (PRGF) and Lithium-Doped 45s5 Bioactive Glass Nanoparticles
Farmani AR, Nekoofar MH, Ebrahimi-Barough S, Azami M, Najafipour S, Moradpanah S and Ai J
Bone tissue engineering is an emerging technique for repairing large bone lesions. Biomimetic techniques expand the use of organic-inorganic spongy-like nanocomposite scaffolds and platelet concentrates. In this study, a biomimetic nanocomposite scaffold was prepared using lithium-doped bioactive-glass nanoparticles and gelatin/PRGF. First, sol-gel method was used to prepare bioactive-glass nanoparticles that contain 0, 1, 3, and 5%wt lithium. The lithium content was then optimized based on antibacterial and MTT testing. By freeze-drying, hybrid scaffolds comprising 5, 10, and 20% bioglass were made. On the scaffolds, human endometrial stem cells (hEnSCs) were cultured for adhesion (SEM), survival, and osteogenic differentiation. Alkaline phosphatase activity and osteopontin, osteocalcin, and Runx2 gene expression were measured. The effect of bioactive-glass nanoparticles and PRGF on nanocomposites' mechanical characteristics and glass-transition temperature ( ) was also studied. An optimal lithium content in bioactive glass structure was found to be 3% wt. Nanoparticle SEM examination indicated grain deformation due to different sizes of lithium and sodium ions. Results showed up to 10% wt bioactive-glass and PRGF increased survival and cell adhesion. Also, Hybrid scaffolds revealed higher ALP-activity and OP, OC, and Runx2 gene expression. Furthermore, bioactive-glass has mainly increased ALP-activity and Runx2 expression, whereas PRGF increases the expression of OP and OC genes. Bioactive-glass increases scaffold modulus and continuously. Hence, the presence of both bioactive-glass and nanocomposite scaffold improves the expression of osteogenic differentiation biomarkers. Subsequently, it seems that hybrid scaffolds based on biopolymers, Li-doped bioactive-glass, and platelet extracts can be a good strategy for bone repair.
Application of Poly (Agar-Co-Glycerol-Co-Sweet Almond Oil) Based Organo-Hydrogels as a Drug Delivery Material
Ersen Dudu T, Alpaslan D and Aktas N
In this study, it was aimed to investigate the synthesis, characterization and drug release behaviors of organo-hydrogels containing pH-sensitive Agar (A), Glycerol (G), Sweet Almond oil (Wu et al. in J Mol Struct 882:107-115, 2008). Organo-hydrogels, which contained Agar, Glycerol and different amounts of Sweet Almond oil, were synthesized via the free-radical polymerization reaction with emulsion technique using glutaraldehyde or methylene bis acrylamide crosslinkers. Then, the degree of swelling, bond structures, blood compatibility and antioxidant properties of the synthesized organo-hydrogels were examined. In addition, Organo-hydrogels which loaded with Ceftriaxone and Oxaliplatin were synthesized with the same polymerization reaction and release kinetics were investigated. In vitro release studies were performed at media similar pH to gastric fluid (pH 2.0), skin surface (pH 5.5), blood fluid (pH 7.4) and intestinal fluid (pH 8.0), at 37 °C. The effects on release of crosslinker type and sweet almond oil amount were investigated. Kinetic parameters were determined using release results and these results were applied to zero and first-order equations and Korsmeyer-Peppas and Higuchi equations. Diffusion exponential was calculated for drug diffusion of organo-hydrogels and values consistent with release results were found.
Polymeric Materials as Potential Inhibitors Against SARS-CoV-2
Umar Y, Al-Batty S, Rahman H, Ashwaq O, Sarief A, Sadique Z, Sreekumar PA and Haque SKM
Recently discovered SARS-CoV-2 caused a pandemic that triggered researchers worldwide to focus their research on all aspects of this new peril to humanity. However, in the absence of specific therapeutic intervention, some preventive strategies and supportive treatment minimize the viral transmission as studied by some factors such as basic reproduction number, case fatality rate, and incubation period in the epidemiology of viral diseases. This review briefly discusses coronaviruses' life cycle of SARS-CoV-2 in a human host cell and preventive strategies at some selected source of infection. The antiviral activities of synthetic and natural polymers such as chitosan, hydrophobically modified chitosan, galactosylated chitosan, amine-based dendrimers, cyclodextrin, carrageenans, polyethyleneimine, nanoparticles are highlighted in this article. Mechanism of virus inhibition, detection and diagnosis are also presented. It also suggests that polymeric materials and nanoparticles can be effective as potential inhibitors and immunization against coronaviruses which would further develop new technologies in the field of polymer and nanoscience.
Functional Properties of Grapefruit Seed Extract Embedded Blend Membranes of Poly(vinyl alcohol)/Starch: Potential Application for Antiviral Activity in Food Safety to Fight Against COVID-19
Patil MB, Mathad SN, Patil AY, Khan A, Hussein MA, Alosaimi AM, Asiri AM, Manikandan A and Khan MMA
The poly(vinyl alcohol) (PVA) and starch-based polymeric films with a ratio of 2:8 were prepared using solution casting followed by a solvent evaporation method. Four types of membranes with varied concentrations of grapefruit seed extract (GSE) i.e., 2.5-10 wt% was incorporated in the films. The prepared membranes were assessed for transparency test, mechanical properties, surface morphology, permeability test for O, and antimicrobial properties. The PVA/starch-10% GSE loaded film showed excellent mechanical properties showing highest 1344 ± 0.7% elongation at break but poor optical transparency with 53.8% to 68.61%. The Scanning Electron Microscopic study reveals the good compatibility between the PVA, Starch, and GSE. The gas permeability test reveals that the prepared films have shown good resistance to the O permeability 0.0326-0.316 Barrer at 20 kg/cm feed pressure for the prepared membranes showing excellent performance. By adding the little amount of GSE into the PVA/starch blend membranes showed promising antimicrobial efficacy against MNV-1. For 4 h. incubation, PVA/starch blend membranes containing 2.5%, 5%, and 10% GSE caused MNV-1 reductions of 0.92, 1.89, and 2.27 log PFU/ml, respectively. Similarly, after 24 h, the 5% and 10% GSE membranes reduced MNV-1 titers by 1.90 and 3.26 log PFU/ml, respectively. Antimicrobial tests have shown excellent performance to resist microorganisms. The water uptake capacity of the membrane is found 72% for the PVA/starch pristine membrane and is reduced to 32% for the 10% GSE embedded membrane. Since the current pandemic situation due to COVID-19 occurred by SARSCOV2, the prepared GSE incorporated polymeric blend films are the rays of hope in the packaging of food stuff.
Systematizing Microbial Bioplastic Production for Developing Sustainable Bioeconomy: Metabolic Nexus Modeling, Economic and Environmental Technologies Assessment
Sangtani R, Nogueira R, Yadav AK and Kiran B
The excessive usage of non-renewable resources to produce plastic commodities has incongruously influenced the environment's health. Especially in the times of COVID-19, the need for plastic-based health products has increased predominantly. Given the rise in global warming and greenhouse gas emissions, the lifecycle of plastic has been established to contribute to it significantly. Bioplastics such as polyhydroxy alkanoates, polylactic acid, etc. derived from renewable energy origin have been a magnificent alternative to conventional plastics and reconnoitered exclusively for combating the environmental footprint of petrochemical plastic. However, the economically reasonable and environmentally friendly procedure of microbial bioplastic production has been a hard nut to crack due to less scouted and inefficient process optimization and downstream processing methodologies. Thereby, meticulous employment of computational tools such as genome-scale metabolic modeling and flux balance analysis has been practiced in recent times to understand the effect of genomic and environmental perturbations on the phenotype of the microorganism. results not only aid us in determining the biorefinery abilities of the model microorganism but also curb our reliance on equipment, raw materials, and capital investment for optimizing the best conditions. Additionally, to accomplish sustainable large-scale production of microbial bioplastic in a circular bioeconomy, extraction, and refinement of bioplastic needs to be investigated extensively by practicing techno-economic analysis and life cycle assessment. This review put forth state-of-the-art know-how on the proficiency of these computational techniques in laying the foundation of an efficient bioplastic manufacturing blueprint, chiefly focusing on microbial polyhydroxy alkanoates (PHA) production and its efficacy in outplacing fossil based plastic products.
Structural Elucidation and Immunostimulatory Activities of Quinoa Non-starch Polysaccharide Before and After Deproteinization
Cao RA, Ma N, Palanisamy S, Talapphet N, Zhang J, Wang C and You S
Non-starch polysaccharides derived from natural resources play a significant role in the field of food science and human health due to their extensive distribution in nature and less toxicity. In this order, the immunostimulatory activity of a non-starch polysaccharide (CQNP) from was examined before and after deproteination in murine macrophage RAW 264.7 cells. The chemical composition of CQNP and deproteinated-CQNP (D-CQNP) were spectrometrically analysed that revealed the presence of carbohydrate (22.7 ± 0.8% and 39.5 ± 0.8%), protein (41.4 ± 0.5% and 20.8 ± 0.5%) and uronic acid (8.7 ± 0.3% and 6.7 ± 0.2%). The monosaccharide composition results exposed that CQNP possesses a high amount of arabinose (34.5 ± 0.3) followed by galactose (26.5 ± 0.2), glucose (21.9 ± 0.3), rhamnose (7.0 ± 0.1), mannose (6.0 ± 0.1) and xylose (4.2 ± 0.2). However, after deproteination, a difference was found in the order of the monosaccharide components, with galactose (41.1 ± 0.5) as a major unit followed by arabinose (34.7 ± 0.5), rhamnose (10.9 ± 0.2), glucose (6.6 ± 0.2), mannose (3.4 ± 0.2) and xylose (3.2 ± 0.2). Further, D-CQNP potentially stimulate the RAW 264.7 cells through the production of nitric oxide (NO), upregulating inducible nitric oxide synthase (iNOS) and various pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-10, and tumor necrosis factor-alpha (TNF-α). Moreover, stimulation of RAW 264.7 cells by D-CQNP takes place along the NF-κB and the MAPKs signaling pathways through the expression of cluster of differentiation 40 (CD40). This results demonstrate that RAW 264.7 cells are effectively stimulated after removal of the protein content in non-starch polysaccharides, which could be useful for develop a new immunostimulant agent.
Green Process for Xylooligosaccharides Production using an Pulp
Henriques PIA, Serrano MLS, de Sousa APM and Alves AMFB
Xylooligosaccharides (XOS) are oligomers with recognized and important prebiotic properties, whose consumption is associated with several health benefits, including a positive impact on the immune system. In this work, XOS were produced through a green process of enzymatic hydrolysis performed directly on an intermediate product from a pulp and paper industry, bleached pulp. Focusing on an industrial, sustainable and more economical application, two goals were defined and validated: (i) no pretreatment of the substrate and (ii) the replacement of the commonly used buffer solution as reaction medium for only water. The influence of the most relevant operating conditions on the production of XOS as well as the respective yields obtained were very similar when using either buffer or water as the reaction medium. For the use of water, although the solution pH decreases during the enzymatic reaction, this change did not affect the production of XOS. For the optimized conditions, 80 °C and 100 U/g pulp, a maximum yield of 31.4 ± 2.6% per total xylan in the pulp was obtained, resulting in more than 50 kg of XOS per ton of pulp. The correspondent hydrolysate was mainly composed by xylobiose (66%) and xylotriose (29%), oligomers with the highest prebiotic effect.
Natural Biocidal Compounds of Plant Origin as Biodegradable Materials Modifiers
Pawłowska A and Stepczyńska M
The article presents a literature review of the plant origin natural compounds with biocidal properties. These compounds could be used as modifiers of biodegradable materials. Modification of polymer material is one of the basic steps in its manufacturing process. Biodegradable materials play a key role in the current development of materials engineering. Natural modifiers are non-toxic, environmentally friendly, and renewable. The substances contained in natural modifiers exhibit biocidal properties against bacteria and/or fungi. The article discusses polyphenols, selected phenols, naphthoquinones, triterpenoids, and phytoncides that are natural antibiotics. Due to the increasing demand for biodegradable materials and the protection of the natural environment against the negative effects of toxic substances, it is crucial to replace synthetic modifiers with plant ones. This work mentions industries where materials containing natural modifying additives could find potential applications. Moreover, the probable examples of the final products are presented. Additionally, the article points out the current world's pandemic state and the use of materials with biocidal properties considering the epidemiological conditions.
Decomposition Behavior of Stereocomplex PLA Melt-Blown Fine Fiber Mats in Water and in Compost
Kara Y and Molnár K
This study introduces systematic and comparative investigations of various PLA fine fiber mats prepared by melt blowing. A series of PLLA and PDLA melt-blown fibers from various L and D enantiomers blends were produced. Their morphological, mechanical, and thermal properties were studied, and their decomposition in water and compost was investigated. It was found that the 1:1 ratio blend with stereocomplex crystals had an 80% lower average fiber diameter, 60% higher specific strength and better thermal stability than the PLLA and PDLA fiber mats. In the case of composting, the crystalline peak melting temperature, crystallinity, and thermogravimetric decomposition temperatures marginally decreased after 14 days. The high surface of the fine fiber mats played a crucial role in fast decomposition, as they entirely disintegrated in less than only 40 days. In the case of water, the homocrystalline domains were more susceptible to hydrolysis than the stereocomplex ones. All the PLA fiber mats underwent decomposition and extensive disintegration for 70 days in water. Hydrolysis reduced the amorphous and crystalline fraction of the fibers via surface and bulk erosion, while the decomposition of stereocomplex-crystalline-rich domains mainly exhibited surface erosion. Findings revealed that high porosity and the high surface area of PLA melt-blown fine fiber mats undergo fast decomposition in compost and in water.
Perspective on the Therapeutic Applications of Algal Polysaccharides
Nigam S, Singh R, Bhardwaj SK, Sami R, Nikolova MP, Chavali M and Sinha S
Algae are an enormous source of polysaccharides and have gained much interest in human flourishing as organic drugs. Algal polysaccharides have aroused interest in the health sector owing to the various bioactivities namely anticancer, antiviral, immunoregulation, antidiabetic and antioxidant effects. The research community has comprehensively described the importance of algal polysaccharides regarding their extraction, purification, and potential use in various sectors. However, regardless of all the intriguing properties and potency in the health sector, these algal polysaccharides deserve detailed investigation. Hence, the present review emphasizes extensively on the previous and latest developments in the extraction, purification, structural properties and therapeutic bioactivities of algal polysaccharides to upgrade the knowledge for further advancement in this area of research. Moreover, the review also addresses the challenges, prospective research gaps and future perspective. We believe this review can provide a boost to upgrade the traditional methods of algal polysaccharide production for the development of efficacious drugs that will promote human welfare.
Biodegradable PEG-PCL Nanoparticles for Co-delivery of MUC1 Inhibitor and Doxorubicin for the Confinement of Triple-Negative Breast Cancer
Behl A, Solanki S, Paswan SK, Datta TK, Saini AK, Saini RV, Parmar VS, Thakur VK, Malhotra S and Chhillar AK
Combating triple-negative breast cancer (TNBC) is still a problem, despite the development of numerous drug delivery approaches. Mucin1 (MUC1), a glycoprotein linked to chemo-resistance and progressive malignancy, is unregulated in TNBC. GO-201, a MUC1 peptide inhibitor that impairs MUC1 activity, promotes necrotic cell death by binding to the MUC1-C unit. The current study deals with the synthesis and development of a novel nano-formulation (DM-PEG-PCL NPs) comprising of polyethylene glycol-polycaprolactone (PEG-PCL) polymer loaded with MUC1 inhibitor and an effective anticancer drug, doxorubicin (DOX). The DOX and MUC1 loaded nanoparticles were fully characterized, and their different physicochemical properties, viz size, shape, surface charge, entrapment efficiencies, release behavior, etc., were determined. With IC values of 5.8 and 2.4 nm on breast cancer cell lines, accordingly, and a combination index (CI) of < 1.0, DM-PEG-PCL NPs displayed enhanced toxicity towards breast cancer cells (MCF-7 and MDA-MB-231) than DOX-PEG-PCL and MUC1i-PEG-PCL nanoparticles. Fluorescence microscopy analysis revealed DOX localization in the nucleus and MUC1 inhibitor in the mitochondria. Further, DM-PEG-PCL NPs treated breast cancer cells showed increased mitochondrial damage with enhancement in caspase-3 expression and reduction in Bcl-2 expression.In vivo evaluation using Ehrlich Ascites Carcinoma bearing mice explicitly stated that DM-PEG-PCL NPs therapy minimized tumor growth relative to control treatment. Further, acute toxicity studies did not reveal any adverse effects on organs and their functions, as no mortalities were observed. The current research reports for the first time the synergistic approach of combination entrapment of a clinical chemotherapeutic (DOX) and an anticancer peptide (MUC1 inhibitor) encased in a diblock PEG-PCL copolymer. Incorporating both DOX and MUC1 inhibitors in PEG-PCL NPs in the designed nanoformulation has provided chances and insights for treating triple-negative breast tumors. Our controlled delivery technology is biodegradable, non-toxic, and anti-multidrug-resistant. In addition, this tailored smart nanoformulation has been particularly effective in the therapy of triple-negative breast cancer.
Polysaccharides; Classification, Chemical Properties, and Future Perspective Applications in Fields of Pharmacology and Biological Medicine (A Review of Current Applications and Upcoming Potentialities)
Mohammed ASA, Naveed M and Jost N
Polysaccharides are essential macromolecules which almost exist in all living forms, and have important biological functions, they are getting more attention because they exhibit a wide range of biological and pharmacological activities, such as anti-tumour, immunomodulatory, antimicrobial, antioxidant, anticoagulant, antidiabetic, antiviral, and hypoglycemia activities, making them one of the most promising candidates in biomedical and pharmaceutical fields. Polysaccharides can be obtained from many different sources, such as plants, microorganisms, algae, and animals. Due to their physicochemical properties, they are susceptible to physical and chemical modifications leading to enhanced properties, which is the basic concept for their diverse applications in biomedical and pharmaceutical fields. In this review, we will give insight into the most recent updated applications of polysaccharides and their potentialities as alternatives for traditional and conventional therapies. Challenges and limitations for polysaccharides in pharmaceutical utilities are discussed as well.
Valorising Cassava Peel Waste Into Plasticized Polyhydroxyalkanoates Blended with Polycaprolactone with Controllable Thermal and Mechanical Properties
Martinaud E, Hierro-Iglesias C, Hammerton J, Hadad B, Evans R, Sacharczuk J, Lester D, Derry MJ, Topham PD and Fernandez-Castane A
Approximately 99% of plastics produced worldwide were produced by the petrochemical industry in 2019 and it is predicted that plastic consumption may double between 2023 and 2050. The use of biodegradable bioplastics represents an alternative solution to petroleum-based plastics. However, the production cost of biopolymers hinders their real-world use. The use of waste biomass as a primary carbon source for biopolymers may enable a cost-effective production of bioplastics whilst providing a solution to waste management towards a carbon-neutral and circular plastics economy. Here, we report for the first time the production of poly(hydroxybutyrate--hydroxyvalerate) (PHBV) with a controlled molar ratio of 2:1 3-hydroxybutyrate:3-hydroxvalerate (3HB:3HV) through an integrated pre-treatment and fermentation process followed by alkaline digestion of cassava peel waste, a renewable low-cost substrate, through biotransformation. PHBV was subsequently melt blended with a biodegradable polymer, polycaprolactone (PCL), whereby the 30:70 (mol%) PHBV:PCL blend exhibited an excellent balance of mechanical properties and higher degradation temperatures than PHBV alone, thus providing enhanced stability and controllable properties. This work represents a potential environmental solution to waste management that can benefit cassava processing industries (or other crop processing industries) whilst developing new bioplastic materials that can be applied, for example, to packaging and biomedical engineering.