Reversal potentials of Tween 20 in ABC transporter-mediated multidrug-resistant cancer and treatment-resistant depression through interacting with both drug-binding and ATP-binding areas on MDR proteins
Drug efflux transporters, especially those belonging to the ATP-binding cassette (ABC) transporter superfamily, play a crucial role in various drug resistance issues, including multidrug resistance (MDR) in cancer and treatment-resistant depression (TRD) in individuals with major depressive disorder. Key transporters in this context include P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), and breast cancer resistance protein (BCRP). This study aimed to investigate the modulatory effects of polyoxyethylene (20) sorbitan monolaurate (Tween 20) on these efflux transporters and to evaluate its potential for overcoming drug resistance in two models: an cancer MDR model and an TRD model. The findings indicated that 0.001% Tween 20 significantly inhibited the efflux actions of all three transporters. Additionally, 0.005% Tween 20 effectively reversed resistance to paclitaxel, vincristine, doxorubicin, and mitoxantrone in various cancer MDR cell lines. In the depression-like behaviour model, 0.01% Tween 20 markedly enhanced the antidepressant and anxiolytic effects of fluoxetine. Given its strong inhibitory effects on P-gp, MRP1, and BCRP, along with its capacity to reverse drug resistance both and , Tween 20 is a compelling candidate for tackling transporter-mediated drug resistance.
Overcoming antibiotic resistance: the potential and pitfalls of drug repurposing
Since its emergence shortly after the discovery of penicillin, antibiotic resistance has escalated dramatically, posing a significant health threat and economic burden. Drug repositioning, or drug repurposing, involves identifying new therapeutic applications for existing drugs, utilising their established safety profiles and pharmacological data to swiftly provide effective treatments against resistant pathogens. Several drugs, including otilonium bromide, penfluridol, eltrombopag, ibuprofen, and ceritinib, have demonstrated potent antibacterial activity against multidrug-resistant (MDR) bacteria. These drugs can disrupt biofilms, damage bacterial membranes, and inhibit bacterial growth. The combination of repurposed drugs with conventional antibiotics can reduce the required dosage of individual drugs, mitigate side effects, and delay the development of resistance, making it a promising strategy against MDR bacteria such as , , , and . Despite its promise, drug repurposing faces challenges such as potential off-target effects, toxicity, and regulatory and intellectual property issues, necessitating rigorous evaluations and strategic solutions. This article aims to explore the potential of drug repurposing as a strategy to combat antibiotic resistance, examining its benefits, challenges, and future prospects. We address the legal, economic, and practical challenges associated with repurposing existing drugs, highlight successful examples, and propose solutions to enhance the efficacy and viability of this approach in combating MDR bacterial infections.
Recent advances in PAMAM mediated nano-vehicles for targeted drug delivery in cancer therapy
3-D multi-faceted, nano-globular PAMAM dendritic skeleton is a highly significant polymer that offers applications in biomedical, industrial, environmental and agricultural fields. This is mainly due to its enhanced properties, including adjustable surface functionalities, biocompatibility, non-toxicity, high uniformity and reduced cytotoxicity, as well as its numerous internal cavities. This trait inspires further exploration and advancements in tailoring approaches. The implementation of deliberate strategic modifications in the morphological characteristics of PAMAM is crucial through chemical and biological interventions, in addition to its therapeutic advancements. Thus, the production of peripheral groups remains a prominent and highly advanced technique in molecular fabrication, aimed at boosting the potential of PAMAM conjugates. Currently, there exist numerous dendritic-hybrid materials, despite the widespread use of PAMAM-conjugated frameworks as drug delivery systems, which are well regarded for their efficacy in enhancing potency through the incorporation of surface functions. This paper provides a comprehensive review of recent progress in the design and assembly of various components of PAMAM conjugates, focusing on their unique formulations. The review encompasses synthetic methodologies, a thorough evaluation of their applicability, and an analysis of their potential functions in the context of Drug Delivery Systems (DDS) in the current period.
Integrating Machine Learning and Multitargeted Drug Design to Combat Antimicrobial Resistance: A Systematic Review
Antimicrobial Resistance (AMR) is a critical global health challenge, undermining the efficacy of antimicrobial drugs against microorganisms like bacteria, fungi, and viruses. Multidrug Resistance (MDR) arises when microorganisms become resistant to multiple antimicrobial agents. The World Health Organization classifies AMR bacteria into Priority List-I (critical), II (high), and III (medium), prompting action from nearly 170 countries. Six priority bacterial strains account for over 70% of AMR-related fatalities, contributing to more than 1.3 million direct deaths annually and linked to over 5 million deaths globally. Enterobacteriaceae, including , , and , significantly contribute to AMR fatalities. This systematic literature review explores how Machine Learning (ML) and Multitargeted Drug Design (MTDD) can combat AMR in Enterobacteriaceae. We followed PRISMA guidelines and comprehensively analysed current prospects and limitations by mining PubMed and Scopus literature databases. Innovative strategies integrating AI algorithms with advanced computational techniques allow for the analysis of vast datasets, identification of novel drug targets, prediction of resistance mechanisms, and optimization of drug molecules to overcome resistance. MTDD approaches hold promise for developing combination therapies that target multiple bacterial survival pathways, reducing the risk of resistance development. Leveraging ML and MTDD is crucial for advancing our fight against AMR in Enterobacteriaceae.
Photodynamic and Sonodynamic Therapy Synergy: Mechanistic Insights and Cellular Responses Against Glioblastoma Multiforme
Glioblastoma multiforme (GBM), the most aggressive form of brain cancer, poses substantial challenges to effective treatment due to its complex and infiltrative nature, making it difficult to manage. Photodynamic therapy (PDT) and sonodynamic therapy (SDT), have emerged as promising individual treatment options against GBM due to their least-invasive approach. However, both PDT and SDT have drawbacks that require careful consideration. A combination therapy using light and sound waves has gained attention, offering new avenues to overcome challenges from individual therapies. Sono-photodynamic therapy (SPDT) has been used against various tumors. Researchers are considering SPDT as a favorable alternative to the conventional therapies for GBM. SPDT offers complementary mechanisms of action, including the production of ROS, disruption of cellular structures, and induction of apoptosis, leading to enhanced tumor cell death. This review gives an insight about PDT/SDT and their limitations in GBM treatment and the need for combination therapy. We try to unveil the process of SPDT and explore the mechanism behind improved SPDT-meditated cell death in GBM cells by focusing on the ROS-mediated cell response occurring as a result of SPDT and discussing current modifications in the existing sensitizers for their optimal use in SPDT for GBM therapy.
A review of recombinant HER3 affibodies with an effective diagnostic view of cancer cells
Breast cancer is one of the leading causes of cancer-related deaths among women globally. Factors like increased expression of HER family members contribute to its development, with elevated HER3 levels-especially in conjunction with tyrosine kinase receptors like HER2-playing a critical role in activating cancer pathways essential for cell survival and proliferation. Detecting high HER3 levels is vital for effective treatment. Affibody proteins, a class that includes antibodies, are used to identify elevated HER3 expression due to their high binding affinity. These innovative non-immune probes show promise in therapy, diagnostics, and biotechnology because of their exceptional specificity and affinity for target proteins. The design of recombinant affibodies enhances HER3 detection accuracy and supports the development of targeted therapies. Advanced engineering techniques optimize these affibodies for stability and binding efficacy, making them suitable for clinical applications. Additionally, their versatility allows integration with imaging technologies for real-time monitoring of HER3 expression and therapeutic responses. This comprehensive approach could lead to more personalized treatment options for patients with HER3-positive breast cancers, improving patient management and outcomes. This study presents recombinant affibodies designed to bind HER3 for cancer cell identification and introduces novel methods for producing various affibody molecules.
Evaluation of anti-diabetic effects of glimepiride/metformin cocrystal
Emerging data suggest that cocrystal of two compounds may have a different pharmacological effect from two compounds alone or their physical combination. Glimepiride (Gli) and metformin (Met) are two types of anti-diabetic drugs. Previously, we generated the glimepiride/metformin cocrystal (GM). In this study, we evaluated the anti-diabetic effects of GM and explored the underlying mechanisms. Our result showed that GM reduced the blood glucose and HbA1c levels in db/db mice, and low doses of GM can achieve the hypoglycaemic effect as Gli or Met alone, and high dose of GM was better than Gli and Met alone in improving the pathological changes of liver. studies showed that GM activated AMPK and STAT3 signalling, downregulated TXNIP expression and upregulated MaFA expression. Moreover, GM promoted the secretion of insulin in pancreas of db/db mice and in high glucose-treated INS-1 and MIN-6 cells. Together, GM possesses slightly better anti-diabetic effects than Met or Gli alone in db/db mice, and the mechanism of GM protecting β-cell dysfunction induced by glucotoxicity may be associated with activation of the AMPK/TXNIP/MaFA pathway.
Humanized recombinant immunotoxin targeting hCG demonstrates therapeutic potential for advanced stage difficult to treat cancers
We report the development of an immunotherapeutic molecule, a immunotoxin, for treating hCG-expressing advanced-stage cancers. PiPP, a high-affinity anti-hCG monoclonal antibody, is used in the immunotoxin for 'homing' hCG-positive cancer cells. The deimmunized (DI) form of α-Sarcin, a fungal-origin toxin that lacks functional T-cell epitopes, is used in the design to ensure minimal immunogenicity of the immunotoxin for repetitive use in humans. A single-chain variable fragment (scFv) of PiPP was constructed by linking the Humanized VH and VL regions of the antibody. The scFv part of the antibody was further linked to the toxin α-Sarcin (DI) at the gene level and expressed as a recombinant protein in . The immunotoxin was purified from the bacterial cell lysate and analysed for binding and cytotoxicity to hCG-secreting colorectal and pancreatic cancer cells. The results showed that the scFv(PiPP)-Sarcin immunotoxin was able to bind to colorectal and pancreatic cancer cells and killed approximately 85% of the cells. testing of the immunotoxin produced results similar to those of testing against colorectal adenocarcinoma-induced tumours. This immunotoxin could be a promising immunotherapeutic agent for treating colorectal, pancreatic and other terminal-stage hCG-expressing cancers.
siRNA Targeting PARP-1 Alleviates Diabetic Peripheral Neuropathy in a Streptozotocin-Induced Rat Model
Diabetic peripheral neuropathy (DPN) is a debilitating complication of diabetes mellitus, affecting nearly 50% of diabetic patients and leading to chronic pain, numbness, and progressive sensory and motor function loss. This study investigates the potential of siRNA-mediated silencing of poly (ADP-ribose) polymerase 1 (PARP1) to alleviate DPN in a rat model. PARP1 overactivation, driven by hyperglycemia-induced oxidative stress, exacerbates neuronal damage in DPN. Using chitosan nanoparticles (ChNPs) to deliver PARP1-targeting siRNA intrathecally in diabetic rats induced with streptozotocin (STZ) 55 mg/kg intraperitoneally, we conducted behavioral and physiological assessments, including Sciatic Functional Index (SFI), motor nerve conduction velocity (MNCV), grip strength, and pain sensitivity tests, alongside qRT-PCR analyses, to evaluate therapeutic outcomes. Our findings indicate statistically significant improvements, with siRNA ChNPs-mediated PARP1 silencing alleviating neuropathic symptoms in DPN rats ( < 0.001 for SFI and MNCV improvements). Biochemical analyses revealed reductions in oxidative stress markers, such as MDA, and increased antioxidant levels, including GSH, CAT, and SOD ( < 0.001). Pro-inflammatory cytokines and apoptotic markers, including NF-κB, IL6, IL1β, TNFa, TGF-β, CAS3, CAS9, BAK, and BAX, also showed significant reductions ( < 0.01), confirming the neuroprotective effects of PARP1 inhibition. These results highlight the potential of siRNA-based therapies targeting PARP1 as a promising therapeutic approach for DPN, paving the way for future research with clinical applications.
Drug screening approaches for small-molecule compounds in cancer-targeted therapy
Small-molecule compounds exhibit distinct pharmacological properties and clinical effectiveness. Over the past decade, advances in covalent drug discovery have led to successful small-molecule drugs, such as EGFR, BTK, and KRAS (G12C) inhibitors, for cancer therapy. Researchers are paying more attention to refining drug screening methods aiming for high throughput, fast speed, high specificity, and accuracy. Therefore, the discovery and development of small-molecule drugs has been facilitated by significantly reducing screening time and financial resources, and increasing promising lead compounds compared with traditional methods. This review aims to introduce classical and emerging methods for screening small-molecule compounds in targeted cancer therapy. It includes classification, principles, advantages, disadvantages, and successful applications, serving as valuable references for subsequent researchers.
Emerging advances in nano-biomaterial assisted amyloid beta chimeric antigen receptor macrophages (CAR-M) therapy: reducing plaque burden in Alzheimer's disease
Alzheimer's disease is the most common form, accounting for 60-70% of 55 million dementia cases. Even though the precise pathophysiology of AD is not completely understood, clinical trials focused on antibodies targeting aggregated forms of β amyloid (Aβ) have demonstrated that reducing amyloid plaques can arrest cognitive decline in patients in the early stages of AD. In this study, we provide an overview of current research and innovations for controlled release from nano-biomaterial-assisted chimeric antigen receptor macrophage (CAR-M) therapeutic strategies targeted at AD. Nano-bio materials, such as iron-oxide nanoparticles (IONPs), can be made selectively (Hp-Hb/mannose) to bind and take up Aβ plaques like CAR-M cells. By using nano-bio materials, both the delivery and stability of CAR-M cells in brain tissue can be improved to overcome the barriers of the BBB and enhance therapeutic effects. By enhancing the targeting capabilities and stability of CAR-M cells, mRNA-loaded nano-biomaterials can significantly improve the efficacy of immunotherapy for plaque reduction in AD. This novel strategy holds promise for translating preclinical successes into clinical applications, potentially revolutionising the management of AD.
Brain targeted polymeric micelles as drug carriers for ischaemic stroke treatment
Ischaemic stroke is a central nervous system disease with high morbidity, recurrence and mortality rates. Thrombolytic and neuroprotective therapies are the main therapeutic strategies for ischaemic stroke, however, the poor delivery efficiency of thrombolytic and neuroprotective drugs to the brain limits their clinical application. So far, the development of nanomedicine has brought opportunities for the above challenges, which can not only realise the effective accumulation of drugs in the target site, but also improve the pharmacokinetic behaviour of the drugs. Among the most rapidly developing nanoparticles, micelles gradually emerging as an effective strategy for ischaemic stroke treatment due to their own unique advantages. This review provided an overview of targeted and response-release micelles based on the physicochemical properties of the ischaemic stroke microenvironment, summarised the targeting strategies for delivering micellar formulations to the thrombus, blood-brain barrier, and brain parenchyma, and finally described the potentials and challenges of polymeric micelles in the treatment of ischaemic stroke.
A review on endoplasmic reticulum-dependent anti-breast cancer activity of herbal drugs: possible challenges and opportunities
Breast cancer (BC) is a major cause of cancer-related mortality across the globe and is especially highly prevalent in females. Based on the poor outcomes and several limitations of present management approaches in BC, there is an urgent need to focus and explore an alternate target and possible drug candidates against the target in the management of BC. The accumulation of misfolded proteins and subsequent activation of unfolded protein response (UPR) alters the homeostasis of endoplasmic reticulum (ER) lumen that ultimately causes oxidative stress in ER. The UPR activates stress-detecting proteins such as IRE1α, PERK, and ATF6, these proteins sometimes may lead to the activation of pro-apoptotic signaling pathways in cancerous cells. The ER stress-dependent antitumor activity could be achieved either through suppressing the adaptive UPR to make cells susceptible to ER stress or by causing chronic ER stress that may lead to triggering of pro-apoptotic signaling pathways. Several herbal drugs trigger ER-dependent apoptosis in BC cells. Therefore, this review discussed the role of fifty-two herbal drugs and their active constituents, focusing on disrupting the balance of the ER within cancer cells. Further, several challenges and opportunities have also been discussed in ER-dependent management in BC.Breast cancer (BC) is a major cause of cancer-related mortality across the globe and is especially highly prevalent in females. Based on the poor outcomes and several limitations of present management approaches in BC, there is an urgent need to focus and explore an alternate target and possible drug candidates against the target in the management of BC. The accumulation of misfolded proteins and subsequent activation of unfolded protein response (UPR) alters the homeostasis of endoplasmic reticulum (ER) lumen that ultimately causes oxidative stress in ER. The UPR activates stress-detecting proteins such as IRE1α, PERK, and ATF6, these proteins sometimes may lead to the activation of pro-apoptotic signaling pathways in cancerous cells. The ER stress-dependent antitumor activity could be achieved either through suppressing the adaptive UPR to make cells susceptible to ER stress or by causing chronic ER stress that may lead to triggering of pro-apoptotic signaling pathways. Several herbal drugs trigger ER-dependent apoptosis in BC cells. Therefore, this review discussed the role of fifty-two herbal drugs and their active constituents, focusing on disrupting the balance of the ER within cancer cells. Further, several challenges and opportunities have also been discussed in ER-dependent management in BC.
Interactions and communications in the prostate tumour microenvironment: evolving towards effective cancer therapy
Prostate cancer is one of the most common malignancies in men. The tumour microenvironment (TME) has a critical role in the initiation, progression, and metastasis of prostate cancer. TME contains various cell types, including cancer-associated fibroblasts (CAFs), endothelial cells, immune cells such as macrophages, lymphocytes B and T, natural killer (NK) cells, and other proteins such as extracellular matrix (ECM) components. The interactions and communications between these cells within the TME are crucial for the growth and response of various solid tumours, such as prostate cancer to different anticancer modalities. In this review article, we exemplify the various mechanisms by which the TME influences prostate cancer progression. The roles of different cells, cytokines, chemokines, and growth factors in modulating the immune response and prostate tumour growth will be discussed. The impact of these cells and factors and other ECM components on tumour cell invasion and metastasis will also be discussed. We explain how these interactions in TME can affect the response of prostate cancer to therapy. We also highlight the importance of understanding these interactions to develop novel therapeutic approaches for prostate cancer.
Methotrexate-Loaded solid lipid nanoparticles enhance the viability of cutaneous flaps: potential for surgical wound healing
Skin flaps are employed to cover cutaneous denuded surfaces, but ensuing flap necrosis often occurs. Previously, rats with myocardial infarction treated with lipid-core nanoparticles (LDE) loaded with methotrexate (MTX) improved myocardial irrigation and reduced necrosis. Here, the aim was to investigate the efficacy of LDE-MTX to preserve the viability of cutaneous flaps and its implications for surgical wound healing. Twenty-eight male rats were divided into 4 groups: (1) LDE, injected intraperitoneally with LDE only; (2) MTX (1 mg/Kg commercial MTX): (3) LDE-MTX (1 mg/Kg MTX associated with LDE), and controls without treatment. LDE, MTX or LDE-MTX were repeated after 2 days. Then, flap surgery (9x3cm) was performed on the dorsal region. Injections were continued every other day until day 7 when animals were euthanized. LDE-MTX treatment improved the total viable area of the flaps with a fourfold increase in blood flow and reduced inflammatory cell number ( < 0.001), accompanied by decreased protein expression of pro-inflammatory factors. SOD-1 was higher in LDE-MTX-treated rats ( < 0.05). In conclusion, LDE-MTX treatment achieved total viability of cutaneous flaps, with increased irrigation and diminished local inflammation. LDE-MTX may offer efficient and cost-effective prevention of cutaneous flaps and treatment for wounds from surgical procedures to be tested in future clinical studies.
Targeting the lung tumour stroma: harnessing nanoparticles for effective therapeutic interventions
Lung cancer remains an influential global health concern, necessitating the development of innovative therapeutic strategies. The tumour stroma, which is known as tumour microenvironment (TME) has a central impact on tumour expansion and treatment resistance. The stroma of lung tumours consists of numerous cells and molecules that shape an environment for tumour expansion. This environment not only protects tumoral cells against immune system attacks but also enables tumour stroma to attenuate the action of antitumor drugs. This stroma consists of stromal cells like cancer-associated fibroblasts (CAFs), suppressive immune cells, and cytotoxic immune cells. Additionally, the presence of stem cells, endothelial cells and pericytes can facilitate tumour volume expansion. Nanoparticles are hopeful tools for targeted drug delivery because of their extraordinary properties and their capacity to devastate biological obstacles. This review article provides a comprehensive overview of contemporary advancements in targeting the lung tumour stroma using nanoparticles. Various nanoparticle-based approaches, including passive and active targeting, and stimuli-responsive systems, highlighting their potential to improve drug delivery efficiency. Additionally, the role of nanotechnology in modulating the tumour stroma by targeting key components such as immune cells, extracellular matrix (ECM), hypoxia, and suppressive elements in the lung tumour stroma.
Development of Non-Viral Targeted RNA Delivery Vehicles - A Key Factor in Success of Therapeutic RNA
Decade-long efforts in medicinal biotechnology have enabled large-scale in-vitro production of optimized therapeutic RNA constructs for stable in-vivo delivery and modify the expression of disease-related genes. The success of lipid nanoparticle-formulated mRNA vaccines against Severe acute respiratory syndrome Coronavirus-2 (SARS-Cov2) has opened a new era of RNA therapeutics and non-viral drug delivery systems. The major limiting factor in the clinical translation of RNA-based drugs is the availability of suitable delivery vehicles that can protect RNA payloads from degradation, offer controlled release, and pose minimal inherent toxicity. Unwanted immune response, payload size constraints, genome integration, and non-specific tissue targeting limit the application of conventional viral drug-delivery vehicles. This review summarizes current research on nano-sized drug carriers, including lipid nanoparticles, polymer-based formulations, cationic nanoemulsion, and cell-penetrating peptides, for targeted therapeutic RNA delivery. Further, this paper highlights the biomimetic approaches (i.e., mimicking naturally occurring bio-compositions, molecular designs, and systems), including virus-like particles (VLPs), exosomes, and selective endogenous eNcapsidation (SEND) technology being explored as safer and more efficient alternatives.
A comprehensive review on recent advancements in drug delivery via selenium nanoparticles
Nanotechnology has significantly impacted drug discovery and development over the past three decades, offering novel insights and expanded treatment options. Key to this field is nanoparticles, ranging from 1 to 100 nanometres, with unique properties distinct from larger materials. Selenium nanoparticles (SeNPs) are particularly promising due to their low toxicity and selective cytotoxicity against cancer cells. They have shown efficacy in reducing various cancers types and mitigating conditions like diabetic nephropathy and neurological disorders, such as Alzheimer's disease. This review highlights SeNPs' role in enhancing drug delivery systems, improving the absorption of water-soluble compounds, proteins, peptides, vaccines, and other biological therapies. By modifying nanoparticle surfaces with targeting ligands, drug delivery can achieve precise site-specific delivery, increasing effectiveness. SeNPs can be synthesised through physical, chemical, and biological methods, each offering advantages in stability, size, and application potential. Additionally, SeNPs enhance immune responses and reduce oxidative stress, validating their role in biotherapy and nanomedicine. Their ability to target macrophages and regulate polarisation underscores their potential in antimicrobial therapies. Recent advancements, such as mannosylated SeNPs for targeted delivery, exemplify innovative nanotechnology applications in medicine. Overall, SeNPs represent a promising frontier in nanomedicine, offering new avenues for treating and managing various diseases.
SIRT1: A Potential Therapeutic Target for Coronary Heart Disease Combined with Anxiety or Depression
Coronary heart disease (CHD) combined with anxiety or depression is increasingly receiving attention in the clinical field of cardiology, and exploring the comorbidity pathological mechanisms of cardiovascular disease combined with psychological disorders is a hot research topic for scholars in this field. Current research suggests that Silent Information Regulatory Factor 1 (SIRT1) may serve as a potential biomarker for the comorbidity mechanism and treatment of CHD with anxiety or depression. SIRT1 is considered a promising therapeutic target for CHD combined with anxiety or depression, with the ability to regulate inflammatory cytokine levels, alleviate oxidative stress damage, activate multiple signaling pathways, reduce platelet hyperresponsiveness, and exert neuroprotective and cardioprotective effects. In this comprehensive review, we deeply studied the structure, function, and mechanism of SIRT1, and discussed its protective effects in the cardiovascular and nervous system. The latest progress in the mechanism of SIRT1's role in CHD combined with anxiety or depression was emphasized, including its specific mechanisms in regulating inflammatory response, alleviating oxidative stress, and mediating various signaling pathways. In addition, this article also summarizes the therapeutic potential of SIRT1 as a potential biomarker in patients with CHD combined with anxiety or depression.
Comparison of the accumulation manner of a macromolecular drug between two mouse tumour models: study with magnetic resonance imaging and the model macromolecular drug, gadolinium-conjugated dextran
A knowledge of the difference of spatio-temporal behaviour of nanomedicine in different type of tumour models is important to develop well-targeted nanomedicine for tumour. In this study, intratumoral accumulation of the model nanomedicine, gadolinium-conjugated dextran (Gd-Dex), was examined with magnetic resonance imaging in two tumour models; mouse sarcoma S180 and radiation-induced mouse fibrosarcoma RIF-1. From time-course of the distribution images, the plasma-to-tumour interstitial tissue transfer constant () and fractional plasma volume () were calculated and mapped. Gd-Dex preferentially distributed to the marginal region of S180 tumours immediately after its injection, and then started to accumulate in some parts of the central region. and values were large in the marginal region, while only was large in some parts of the central region. In contrast, the distribution of Gd-Dex in RIF-1 tumours was fairly homogeneous, and may have resulted from the homogeneous distributions of and . The amounts of Gd-Dex that accumulated in entire tumours in both tumour models correlated with the volume of tumours; however, accumulation in large S180 tumours deviated from the correlation in the early phase. The differences in the manner and pharmacokinetics of nanomedicine among tumour models may affect the accumulation of the medicine.
Igniting tumour microenvironment in triple-negative breast cancer using a mannose/hyaluronic acid dual-coated Ganoderma polysaccharide-superparamagnetic iron oxide nanocomplex for combinational therapies
Eliciting tumour microenvironment (TME) activation in triple-negative breast cancer (TNBC) is crucial for effective anti-tumour therapies. The aim of this study is to employ pharmaceutical approaches to precisely deliver Ganoderma polysaccharide (GPS) to tumour sites, thereby enhancing TME activation. We first established a direct link between the accumulation of GPS within tumours and its efficacy in the TME activation. Building upon this insight, we then engineered a mannose/hyaluronic acid dual-coated GPS-loaded superparamagnetic iron oxide nanocomplex (Man/HA/GPS-SPIONs) with a particle size of 33.8 ± 1.6 nm and a zeta potential of -22.4 ± 3.5 mV, capable of precise tumour accumulation through magnet-assisted targeting and internalisation by tumour-associated macrophages (TAMs) and tumour cells, facilitated by dual ligand modification. , Man/HA/GPS-SPIONs effectively induced M1 polarisation of macrophages (CD86 cells: 38.6 ± 2.8%), curbed 4T1 cell proliferation (viability: 47.3 ± 2.9%) and heightened Th1 cytokine release. Significantly, , Man/HA/GPS-SPIONs notably suppressed tumour growth (tumour index: 0.048 ± 0.005), fostered M1 polarisation of TAMs (CD45F4/80CD86 cells: 26.1 ± 7.2%), consequently bolstering intratumoural T cytotoxic cells. This enhancement was intricately tied to the efficient co-delivery of GPS and iron ions to the tumours, made possible by the Man/HA/GPS-SPIONs delivery system. The synergistic effects with paclitaxel (PTX, inhibition rate: 61.2 ± 4.3%) and PD-1 inhibitors (inhibition rate: 69.8 ± 7.6%) underscored the translational potential of this approach. By harnessing a well-conceived iron-based drug delivery strategy, this study amplifies the tumour immune modulatory potential of natural polysaccharides, offering insightful guidance for interventions in the TME and synergistic therapies.