International Journal of Computer-Supported Collaborative Learning

Distinguishing knowledge-sharing, knowledge-construction, and knowledge-creation discourses
van Aalst J
The study reported here sought to obtain the clear articulation of asynchronous computer-mediated discourse needed for Carl Bereiter and Marlene Scardamalia's knowledge-creation model. Distinctions were set up between three modes of discourse: knowledge sharing, knowledge construction, and knowledge creation. These were applied to the asynchronous online discourses of four groups of secondary school students (40 students in total) who studied aspects of an outbreak of Severe Acute Respiratory Syndrome (SARS) and related topics. The participants completed a pretest of relevant knowledge and a collaborative summary note in Knowledge Forum, in which they self-assessed their collective knowledge advances. A coding scheme was then developed and applied to the group discourses to obtain a possible explanation of the between-group differences in the performance of the summary notes and examine the discourses as examples of the three modes. The findings indicate that the group with the best summary note was involved in a threshold knowledge-creation discourse. Of the other groups, one engaged in a knowledge-sharing discourse and the discourses of other two groups were hybrids of all three modes. Several strategies for cultivating knowledge-creation discourse are proposed.
From Cognitive Load Theory to Collaborative Cognitive Load Theory
Kirschner PA, Sweller J, Kirschner F and Zambrano R J
Cognitive load theory has traditionally been associated with individual learning. Based on evolutionary educational psychology and our knowledge of human cognition, particularly the relations between working memory and long-term memory, the theory has been used to generate a variety of instructional effects. Though these instructional effects also influence the efficiency and effectiveness of collaborative learning, be it computer supported or face-to-face, they are often not considered either when designing collaborative learning situations/environments or researching collaborative learning. One reason for this omission is that cognitive load theory has only sporadically concerned itself with certain particulars of collaborative learning such as the concept of a collective working memory when collaborating along with issues associated with transactive activities and their concomitant costs which are inherent to collaboration. We illustrate how and why cognitive load theory, by adding these concepts, can throw light on collaborative learning and generate principles specific to the design and study of collaborative learning.
Scaffolding of small groups' metacognitive activities with an avatar
Molenaar I, Chiu MM, Sleegers P and van Boxtel C
Metacognitive scaffolding in a computer-supported learning environment can influence students' metacognitive activities, metacognitive knowledge and domain knowledge. In this study we analyze how metacognitive activities mediate the relationships between different avatar scaffolds on students' learning. Multivariate, multilevel analysis of the 51,339 conversation turns by 54 elementary school students working in triads showed that scaffolding has an effect on students' learning. Students receiving structuring or problematizing metacognitive scaffolds displayed more metacognitive knowledge than students in the control group. Metacognitive activities mediated the effects of scaffolding, and increased metacognitive activities supported students' metacognitive knowledge. Moreover, students who were engaged in proportionately more cognitive activities or fewer off-task activities also outperformed other students on the metacognitive knowledge test. Only problematizing scaffolds led to more domain knowledge and metacognitive activities mediated the effects of the problematizing scaffolds. Moreover, students in the problematizing condition who engaged in more cognitive activities or whose group mates used more relational activities had greater domain knowledge acquisition than other students.
Advocating for group interaction in the age of COVID-19
Järvelä S and Rosé CP
Regulating self-organized collaborative learning: the importance of homogeneous problem perception, immediacy and intensity of strategy use
Melzner N, Greisel M, Dresel M and Kollar I
Very often, university students deliberately form self-organized study groups, e.g. to study collaboratively for an upcoming exam. Yet, very little is known about what regulation problems such self-organized study groups encounter during their learning process and how they try to cope with these problems. Therefore, this study investigates how completely self-organized groups (i.e., non-guided groups outside the classroom that form without external impulse) regulate their collaborative learning process when faced with different kinds of regulation problems. More specifically, we tested the hypotheses that members of self-organized study groups are more satisfied with their group learning experience (a) the more homogeneous their problem perceptions are within their group, (b) the more they apply immediate (rather than non-immediate) strategies to remedy their regulation problems, and (c) the more frequently they apply regulation strategies. In a longitudinal study,  = 122 students, voluntarily studying for their exams in  = 52 groups, were asked to indicate the types of problems they experienced, the types of strategies they used to tackle those problems, and their satisfaction with their group learning experience after each of their self-organized study meetings. Hierarchical linear modeling confirmed all hypotheses. Qualitative analysis of two selected groups' self-reported situational data provided additional insights about the mechanisms that may have contributed to the results. Our study provides important directions for future research, including the recommendation to identify the processes by which groups (a) can reach homogeneity of problem perceptions and (b) coordinate the choice of appropriate strategies within the group.
Building community together: towards equitable CSCL practices and processes
Rosé CP and Järvelä S
Social sensitivity: a manifesto for CSCL research
Isohätälä J, Näykki P, Järvelä S, Baker MJ and Lund K
Technologies for computer-supported collaborative learning (CSCL) are playing an increasingly prominent role in educational contexts, especially as teachers and students strive to deal with pandemic-related constraints. However, the technologies being used for collaboration on a daily basis are not sufficiently equipped to promote collaborative learning as both a cognitive and a socio-emotional process. They may even run the risk of hindering the constructive exchange of ideas and provoking disputes and negative encounters. In this squib, we argue that the field of CSCL is failing to address this risk, because our research efforts are far too scattered and siloed. We introduce a manifesto of social sensitivity: increasing interdisciplinary efforts to enhance constructively critical, respectful, and cohesive collaborations in technology-supported environments. We call for concrete actions in CSCL research that ultimately contribute to more democratic and equitable collaborations.
Self-efficacy and behavior patterns of learners using a real-time collaboration system developed for group programming
Hsu TC, Abelson H, Patton E, Chen SC and Chang HN
In order to promote the practice of co-creation, a real-time collaboration (RTC) version of the popular block-based programming (BBP) learning environment, MIT App Inventor (MAI), was proposed and implemented. RTC overcomes challenges related to non-collocated group work, thus lowering barriers to cross-region and multi-user collaborative software development. An empirical study probed into the differential impact on self-efficacy and collaborative behavior of learners in the environment depending upon their disciplinary background. The study serves as an example of the use of learning analytics to explore the frequent behavior patterns of adult learners, in this case specifically while performing BBP in MAI integrated with RTC. This study compares behavior patterns that are collaborative or individual that occurred on the platform, and investigates the effects of collaboration on learners working within the RTC depending on whether they were CS-majors or not. We highlight advantages of the new MAI design during multi-user programming in the online RTC based on the connections between the interface design and BBP as illustrated by two significant behavior patterns found in this instructional experiment. First, the multi-user programming in the RTC allowed multiple tasks to happen at the same time, which promoted engagement in joint behavior. For example, one user arranged components in the interface design while another dragged blocks to complete the program. Second, this study confirmed that the Computer Programming Self-Efficacy (CPSE) was similar for individual and multi-user programming overall. The CPSE of the homogeneous CS-major groups engaged in programming within the RTC was higher than that of the homogeneous non-CS-major groups and heterogeneous groups. There was no significant difference between the CPSE of the homogenous non-CS group and the CPSE of the heterogeneous groups, regardless of whether they were engaged in individual programming or collaborative programming within their groups. The results of the study support the value of engaging with MAI collaboratively, especially for CS-majors, and suggest directions for future work in RTC design.
An automated group learning engagement analysis and feedback approach to promoting collaborative knowledge building, group performance, and socially shared regulation in CSCL
Zheng L, Long M, Niu J and Zhong L
Learning engagement has gained increasing attention in the field of education. Previous studies have adopted conventional methods to analyze learning engagement, but these methods cannot provide timely feedback for learners. This study analyzed automated group learning engagement via deep neural network models in a computer-supported collaborative learning (CSCL) context. A quasi-experimental research design was implemented to examine the effects of the automated group learning engagement analysis and feedback approach on collaborative knowledge building, group performance, socially shared regulation, and cognitive load. In total, 120 college students participated in this study; they were assigned to 20 experimental groups and 20 control groups of three students each. The students in the experimental groups adopted the automated group learning engagement analysis and feedback approach, whereas those in the control groups used the traditional online collaborative learning approach. Both quantitative and qualitative data were collected and analyzed in depth. The results indicated significant differences in group learning engagement, group performance, collaborative knowledge building, and socially shared regulation between the experimental and control groups. The proposed approach did not increase the cognitive load for the experimental groups. The implications of the findings can potentially contribute to improving group learning engagement and group performance in CSCL.
Fostering regulatory processes using computational scaffolding
Silva L, Mendes A, Gomes A and Fortes G
The use of computational scaffolding is a crucial strategy to foster students' regulation of learning skills, which is associated with increased learning achievement. However, most interventions treat the regulatory processes as individual actions isolated from a social context. This view contradicts the most recent research that points to the importance of studying the regulatory phenomenon from a social-cognitive perspective, where students' interactions influence their regulation of the learning process. This work explores these problems and presents multiple scaffolds to promote Self-regulation of Learning (SRL), co-regulation, and socially shared regulation of learning (SSRL) embedded within a computer-supported collaborative learning environment. A single-blind randomized controlled trial was performed with students ( = 71) enrolled in an online introductory programming course. Students were randomly assigned to three groups: 1) SRL-only support, 2) SRL, co-regulation, and SSRL support, and 3) a no support control group. The findings revealed that students who received regulatory support achieved higher course grades than the control group. However, only students who received SSRL and co-regulation support achieved superior performance in collaborative activities, confirming the importance of this type of regulation. Even though students did not increase in SRL aptitude, the intervention provided support for achieving higher grades in the course.