Prolonged L-NAME exposure changes the vasodilator factor from NO to HO in human arterioles in response to A23187
The Ca ionophore A23187 induces endothelium-dependent and non-receptor-mediated vasodilation in human adipose arterioles (HAAs). The purpose of this study was to determine the mechanism of A23187-induced dilation in HAAs from patients with and without coronary artery disease (CAD). HAAs were freshly isolated from adipose tissues obtained from non-CAD (n = 25) and CAD (n = 14) patients, and vascular reactivity was studied by videomicroscopy. No difference in baseline dose response to A23187 was observed between non-CAD and CAD subjects. However, acute (30 min) incubation with N(omega)-nitro-l-arginine methyl ester (L-NAME), NO synthase inhibitor strongly reduced A23187-induced dilation in non-CAD arterioles, while catalase, an HO scavenger, largely abolished dilation in CAD. Surprising, prolonged (90 min) incubation with L-NAME restored A23187 response in non-CAD subjects, which was subsequently inhibited by catalase. The action of prolonged L-NAME exposure was not reversible after washing with Krebs while the effect of acute L-NAME exposure was largely reversible. To further determine the role of mitochondria-derived ROS in A23187-induced dilation, arterioles were treated with rotenone, an inhibitor of complex I of the electron transport chain. Rotenone abolished A23187 response in CAD patients and in non-CAD arterioles after prolonged L-NAME, but not in non-CAD controls. These data indicate that NO contributes to A23187-induced dilation in HAAs from non-CAD patients and HO contributes to the dilation in CAD patients. Prolonged L-NAME exposure induces a NO-HO switch in the mechanism of dilation in non-CAD subjects. Moreover, the effect of prolonged L-NAME exposure is not readily reversible, while the action of acute L-NAME exposure is reversible.
LncRNA MYOSLID contributes to PH via targeting BMPR2 signaling in pulmonary artery smooth muscle cell
The pathogenesis and vascular remodeling during pulmonary hypertension (pH) have been associated with dysregulation of bone morphogenetic protein receptor type 2 (BMPR2) and transforming growth factor-β (TGF-β) signaling in pulmonary artery smooth muscle cells (PASMCs). Evidence suggests that the human-specific lncRNA MYOSLID is a transcriptional target of the TGF-β/SMAD pathway. In this study, we investigated the involvement of MYOSLID in the pathogenesis of PH.
Sotatercept: New drug on the horizon of pulmonary hypertension
Sotatercept (brand name WINREVAIR, developed by Merck) is an activin receptor type IIA-Fc (ActRIIA-Fc), working by sequestering free activins. Sotatercept restores the balance between the activin proliferative pathway and the bone morphogenic protein (BMP) antiproliferative pathway in the pulmonary arterial cirulation. Sotatercept recently received approval in the USA and in Europe for the treatment of adults with pulmonary arterial hypertension (PAH) Group 1, on top of background PAH therapy to increase exercise capacity, improve WHO functional class and reduce the risk of clinical worsening events. Nevertheless, several studies are ongoing to investigate the potential adverse reactions of the drug especially at the haematological level. We provide an overview of the clinical and preclinical evidence of the targeting the activing pathway through sotatercept on the treatment of PAH. We also discuss what other possibilities there are for the application of sotatercept in the setting of pulmonary hypertension other than PAH Group 1.
Bioactive lipids improve serum HDL and PON1 activities in coronary artery disease patients: Ex-vivo study
Atherosclerotic cardiovascular disease (CVD) remains a leading cause of vascular disease worldwide. Atherosclerosis is characterized by the accumulation of lipids and oxidized lipids on the blood vessel walls. Coronary artery disease (CAD) is the most common display of atherosclerotic CVD.
Examining the controversies in venous thromboembolism prophylaxis for vascular surgery patients: A critical review
Venous thromboembolism (VTE) is a significant concern in vascular surgery due to its potentially severe consequences. Effective prophylactic measures are essential to minimize the risks associated with VTE. However, considerable controversy remains regarding the optimal strategies for VTE prevention in patients undergoing vascular procedures.
Different gene expression patterns between mouse and human brain pericytes revealed by single-cell/nucleus RNA sequencing
Pericytes in the brain play important roles for microvascular physiology and pathology and are affected in neurological disorders and neurodegenerative diseases. Mouse models are often utilized for pathophysiology studies of the role of pericytes in disease; however, the translatability is unclear as brain pericytes from mouse and human have not been systematically compared. In this study, we investigate the similarities and differences of brain pericyte gene expression between mouse and human. Our analysis provides a comprehensive resource for translational studies of brain pericytes.
Lack of AMP-activated protein kinase-α1 reduces nitric oxide synthesis in thoracic aorta perivascular adipose tissue
Perivascular adipose tissue (PVAT) releases anti-contractile bioactive molecules including NO. PVAT anti-contractile activity is attenuated in mice lacking AMPKα1 (AMP-activated protein kinase-α1). As AMPK regulates endothelial NO synthase (eNOS) activity in cultured cells, NO synthesis was examined in PVAT from AMPKα1 knockout (KO) mice.
Functional characterization of human IL-8 in vascular stenosis using a novel humanized transgenic mouse model
IL-8 (aka interleukin 8, CXCL8) is a prototypic cytokine that is highly expressed in the diseased vessel wall and its plasma concentration is strongly associated with cardiovascular events. However, whether IL-8 plays a causative role in cardiovascular diseases remains largely unknown. In this study we used a human IL-8 transgenic (Tg) mouse strain with a bacterial artificial chromosome (BAC) integrated into its genome. This BAC encompasses 166 kb of sequence encompassing the human IL-8 gene locus as well as upstream and downstream DNA sequences containing regulatory elements. This BAC ensured a pathophysiologically regulated, rather than forced constitutive, expression of human IL-8 in the mouse. Tg mice were subjected to complete carotid ligation injury. IL-8 was highly expressed in the ligation-injured carotid artery from 3 days until 2 weeks after injury. As a result, exacerbated neointimal hyperplasia and increased Mac2 and PCNA positive cells were observed in Tg mice. To further confirm its role in promoting neointimal formation, IL-8 was neutralized by anti-IL8 treatment at the ligation site. Consequently, the size of neointima was significantly reduced. Our results provided new insights into the regulation and function of IL-8 in response to vascular insult and during neointima formation.
Characterization of a novel mitophagy-related 5-genes signature for diagnosis of acute myocardial infarction
Myocardial infarction (MI) and the ensuing heart failure (HF) remain the main cause of morbidity and mortality worldwide. One of the strategies to combat MI and HF lies in the ability to accurately predict the onset of these disorders. Alterations in mitochondrial homeostasis have been reported to be involved in the pathogenesis of various cardiovascular diseases (CVDs). In this regard, perturbations to mitochondrial dynamics leading to impaired clearance of dysfunctional mitochondria have been previously established to be a crucial trigger for MI/HF. In this study, we found that MI patients could be classified into three clusters based on the expression levels of mitophagy-related genes and consensus clustering. We identified a mitophagy-related diagnostic 5-genes signature for MI using support vector machines-Recursive Feature Elimination (SVM-RFE) and random forest, with the area under the ROC curve (AUC) value of the predictive model at 0.813. Additionally, the single-cell transcriptome and pseudo-time analyses showed that the mitoscore was significantly upregulated in macrophages, endothelial cells, pericytes, fibroblasts and monocytes in patients with ischemic cardiomyopathy, while sequestosome 1 (SQSTM1) exhibited remarkable increase in the infarcted (ICM) and non-infarcted (ICMN) myocardium samples dissected from the left ventricle compared with control samples. Lastly, through analysis of peripheral blood from MI patients, we found that the expression of SQSTM1 is positively correlated with troponin-T (P < 0.0001, R = 0.4195, R2 = 0.1759). Therefore, this study provides the rationale for a cell-specific mitophagy-related gene signature as an additional supporting diagnostic for CVDs.
Macrophages in vascular disease: Roles of mitochondria and metabolic mechanisms
Macrophages are a dynamic cell type of the immune system implicated in the pathophysiology of vascular diseases and are a major contributor to pathological inflammation. Excessive macrophage accumulation, activation, and polarization is observed in aortic aneurysm (AA), atherosclerosis, and pulmonary arterial hypertension. In general, macrophages become activated and polarized to a pro-inflammatory phenotype, which dramatically changes cell behavior to become pro-inflammatory and infiltrative. These cell types become cumbersome and fail to be cleared by normal mechanisms such as autophagy. The result is a hyper-inflammatory environment causing the recruitment of adjacent cells and circulating immune cells to further augment the inflammatory response. In AA, this leads to excessive ECM degradation and chemokine secretion, ultimately causing macrophages to dominate the immune cell landscape in the aortic wall. In atherosclerosis, monocytes are recruited to the vascular wall, where they polarize to the pro-inflammatory phenotype and induce inflammatory pathway activation. This leads to the development of foam cells, which significantly contribute to neointima and necrotic core formation in atherosclerotic plaques. Pro-inflammatory macrophages, which affect other vascular diseases, present with fragmented mitochondria and corresponding metabolic dysfunction. Targeting macrophage mitochondrial dynamics has proved to be an exciting potential therapeutic approach to combat vascular disease. This review will summarize mitochondrial and metabolic mechanisms of macrophage activation, polarization, and accumulation in vascular diseases.
Matrix metalloproteinases in aortic dissection
Aortic dissection, characterized by a high immediate mortality, is primarily caused by excessive bleeding within the walls of the aorta or a severe tear within the intimal layer of the aorta. Inflammation, as well as oxidative stress and the degradation of extracellular matrix (ECM), are significant factors in the development and occurrence of aortic dissection. Matrix metalloproteinases (MMPs) are pivotal enzymes responsible for degrading the ECM. Inflammatory factors and oxidants can interact with MMPs, indicating the potential significance of MMPs in aortic dissection. A substantial body of evidence indicates that numerous MMPs are significantly upregulated in aortic dissection, playing a critical role in ECM degradation and the pathogenesis of aortic dissection. Furthermore, targeting these enzymes has demonstrated potential in facilitating ECM restoration and reducing the incidence of aortic dissection. This review initially provides a brief overview of MMP biology before delving into their expression patterns, regulatory mechanisms, and therapeutic applications in aortic dissection. A profound comprehension of the catabolic pathways associated with aortic dissection is imperative for the future development of potential preventive or therapeutic bio-interventions for aortic dissection.
Gaps in evidence in the treatment of prevalent patients with pulmonary arterial hypertension at intermediate risk: An expert consensus
Despite the innovations introduced in the 2022 European Society of Cardiology/European Respiratory Society Guidelines on Pulmonary Hypertension, risk discrimination and management of pulmonary arterial hypertension (PAH) patients at intermediate risk still represents a grey zone. Additionally, clinical evidence derived from currently available studies is limited. This expert panel survey intends to aid physicians in choosing the best therapeutic strategy for patients at intermediate risk despite ongoing oral therapy. An expert panel of 24 physicians, specialized in cardiology and/or pulmonology with expertise in handling all drugs available for the treatment of PAH participated in the survey. All potential therapeutic options for patients at intermediate risk were explored and analyzed to produce graded consensus statements regarding: the switch from endothelin receptor antagonist (ERA) or phosphodiesterase 5 inhibitor (PDE5i) to another oral drug of the same class; the addition of a drug targeting the prostacyclin pathway administered by different routes; the switch from PDE5i to riociguat.
Altered copper transport in oxidative stress-dependent brain endothelial barrier dysfunction associated with Alzheimer's disease
Oxidative stress and blood-brain barrier (BBB) disruption due to brain endothelial barrier dysfunction contribute to Alzheimer's Disease (AD), which is characterized by beta-amyloid (Aβ) accumulation in senile plaques. Copper (Cu) is implicated in AD pathology and its levels are tightly controlled by several Cu transport proteins. However, their expression and role in AD, particularly in relation to brain endothelial barrier function remains unclear. In this study, we examined the expression of Cu transport proteins in the brains of AD mouse models as well as their involvement in Aβ42-induced brain endothelial barrier dysfunction. We found that the Cu uptake transporter CTR1 was upregulated, while the Cu exporter ATP7A was downregulated in the hippocampus of AD mouse models and in Aβ42-treated human brain microvascular endothelial cells (hBMECs). In the 5xFAD AD mouse model, Cu levels (assessed by ICP-MS) were elevated in the hippocampus. Moreover, in cultured hBMECs, Aβ42-induced reactive oxygen species (ROS) production, ROS-dependent loss in barrier function (measured by transendothelial electrical resistance), and tyrosine phosphorylation of CDH5 were all inhibited by either a membrane permeable Cu chelator or by knocking down CTR1 expression. These findings suggest that dysregulated expression of Cu transport proteins may lead to intracellular Cu accumulation in the AD brain, and that Aβ42 promotes ROS-dependent brain endothelial barrier dysfunction and CDH5 phosphorylation in a CTR1-Cu-dependent manner. Our study uncovers the critical role of Cu transport proteins in oxidative stress-related loss of BBB integrity in AD.
3-methoxycatechol causes vasodilation likely via K channels: ex vivo, in silico docking and in vivo study
Substituted catechols include both natural and synthetic compounds found in the environment and foods. Some of them are flavonoid metabolites formed by the gut microbiota which are absorbed afterwards. Our previous findings showed that one of these metabolites, 4-methylcatechol, exerts potent vasorelaxant effects in rats. In the current study, we aimed at testing of its 22 structural congeners in order to find the most potent structure and to investigate the mechanism of action. 3-methoxycatechol (3-MOC), 4-ethylcatechol, 3,5-dichlorocatechol, 4-tert-butylcatechol, 4,5-dichlorocatechol, 3-fluorocatechol, 3-isopropylcatechol, 3-methylcatechol and the parent 4-methylcatechol exhibited high vasodilatory activities on isolated rat aortic rings with ECs ranging from ∼10 to 24 μM. Some significant sex-differences were found. The most potent compound, 3-MOC, relaxed also resistant mesenteric artery but not porcine coronary artery, and decreased arterial blood pressure in both male and female spontaneously hypertensive rats in vivo without affecting heart rate. It potentiated the vasodilation mediated by cAMP and cGMP, but did not impact L-type Ca-channels. By using two inhibitors, activation of voltage-gated potassium channels (K) was found to be involved in the mechanism of action. This was corroborated by docking analysis of 3-MOC with the K7.4 channel. None of the most active catechols decreased the viability of the A-10 rat embryonic thoracic aorta smooth muscle cell line. Our findings showed that various catechols can relax vascular smooth muscles and hence could provide templates for developing new antihypertensive vasodilator agents without affecting coronary circulation.
Antithrombotic properties of Tafamidis: An additional protective effect for transthyretin amyloid cardiomyopathy patients
Tafamidis is a molecular chaperone that stabilizes the transthyretin (TTR) homo-tetramer, preventing its dissociation and consequent deposition as amyloid fibrils in organ tissues. Tafamidis reduces mortality and the incidence of hospitalization for cardiovascular causes in patients with TTR amyloid (ATTR) cardiomyopathy. As ATTR cardiomyopathy is associated with a high risk of thromboembolic complications, we hypothesized that tafamidis may have a direct ancillary anti-thrombotic effect.
Recent advances in serum response factor posttranslational modifications and their therapeutic potential in cardiovascular and neurological diseases
Serum Response Factor (SRF) is a key regulatory transcription factor present in various cell types throughout the body, playing essential roles in cellular functions under physiological conditions. Mutations and abnormal expression of SRF have been linked to the development of various diseases and disorders. Recent evidence highlights that post-translational modifications (PTMs) are critical for regulating SRF function in different cell types and contribute to disease pathogenesis. Targeting SRF-related PTMs is emerging as a promising therapeutic approach for treating SRF-associated diseases. In this review, we summarize recent advances in understanding SRF PTMs and their underlying regulatory mechanisms. We also explore the implications of SRF-PTM in related cardiovascular and neurological diseases and their potential for therapeutic intervention. This information underscores the significance of SRF PTMs in both physiological and pathological contexts, enhancing our understanding of disease mechanisms and paving the way for the development of novel therapeutic strategies.
Cardiac biogenic amine profile and its relationship with parameters of cardiovascular disease in obesity
To identify the cardiac biogenic amine profile of obese rats and associate these compounds with parameters of cardiovascular disease.
Novel therapeutic targets for reperfusion injury in ischemic stroke: Understanding the role of mitochondria, excitotoxicity and ferroptosis
Ischemic reperfusion injury (IRI) remains a significant challenge in various clinical settings, including stroke. Despite advances in reperfusion strategies, the restoration of blood flow to ischemic tissues often exacerbates tissue damage through a complex cascade of cellular and molecular events. In recent years, there has been growing interest in identifying novel therapeutic targets to ameliorate the detrimental effects of IRI and improve patient outcomes. This review critically evaluates emerging therapeutic targets and strategies for IRI management, such as R-spondin 3, neurolysin, glial cell gene therapy and inter alpha inhibitors. Diverse pathophysiology involved in IRI stroke such as oxidative stress, inflammation, mitochondrial dysfunction, and ferroptosis are also closely discussed. Additionally, we explored the intricate interplay between inflammation and IRI, focusing on cell-mediated gene therapy approaches and anti-inflammatory agents that hold promise for attenuating tissue damage. Moreover, we delve into novel strategies aimed at preserving endothelial function, promoting tissue repair, and enhancing cellular resilience to ischemic insults. Finally, we discuss challenges, future directions, and translational opportunities for the development of effective therapies targeting ischemic reperfusion injury.
Exploring bradykinin: A common mediator in the pathophysiology of sepsis and atherosclerotic cardiovascular disease
Sepsis and atherosclerotic cardiovascular disease (ASCVD) are major health challenges involving complex processes like inflammation, renin-angiotensin system (RAS) dysregulation, and thrombosis. Despite distinct clinical symptoms, both conditions share mechanisms mediated by bradykinin. This review explores bradykinin's role in inflammation, RAS modulation, and thrombosis in sepsis and ASCVD. In sepsis, variable kininogen-bradykinin levels may correlate with disease severity and progression, though the effect of bradykinin receptor modulation on inflammation remains uncertain. RAS activation is present in both diseases, with sepsis showing variable or low levels of Ang II, ACE, and ACE2, while ASCVD consistently exhibits elevated levels. Bradykinin may act as a mediator for ACE2 and AT2 receptor effects in RAS regulation. It may influence clotting and fibrinolysis in sepsis-associated coagulopathy, but evidence for an antithrombotic effect in ASCVD is insufficient. Understanding bradykinin's role in these shared pathologies could guide therapeutic and monitoring strategies and inform future research.
Disease mechanisms and therapeutic targets in pulmonary hypertension: Key insights from the special issue of vascular pharmacology on pulmonary hypertension
Association of serum 25-hydroxyvitamin D3 levels with carotid artery intima-media thickness and carotid atherosclerotic plaques in smokers
This study explores the association of serum 25-hydroxyvitamin D3 (25(OH)D3) levels with carotid artery intima-media thickness (CIMT), and the presence of carotid atherosclerotic plaques in individuals with a history of smoking.