MICROPOROUS AND MESOPOROUS MATERIALS

Low-cost zeolitic carriers for delivery of hydroxychloroquine immunomodulatory agent with antiviral activity
Olejnik A, Panek R, Madej J, Franus W and Goscianska J
The coronavirus pandemic prompted scientists to look for active pharmaceutical ingredients that could be effective in treating COVID-19. One of them was hydroxychloroquine, an antimalarial and immunomodulatory agent exhibiting antiviral activity. The anchoring of this drug on porous carriers enables control of its delivery to a specific place in the body, and thus increases bioavailability. In this work, we developed low-cost zeolitic platforms for hydroxychloroquine. The waste solution generated during zeolite production from fly ashes was used in the synthesis of Na-A and Na-X carriers at laboratory and technical scale. The materials were characterized by high purity and single mineral phase composition. The surface charge of zeolites varied from negative at pH 5.8, and 7.2, to positive at pH 1.2. All samples indicated good sorption ability towards hydroxychloroquine. The mechanism of drug adsorption was based on electrostatic interactions and followed the Freundlich model. Zeolitic carriers modified the hydroxychloroquine release profiles at conditions mimicking the pH of body fluids. The mode of drug liberation was affected by particle size distributions, morphological forms, and chemical compositions of zeolites. The most hydroxychloroquine controlled release at pH 5.8 for the Na-X material was noted, which indicates that it can enhance the drug therapeutic efficacy.
Metal-organic framework MIL-100(Fe) as a promising sensor for COVID-19 biomarkers detection
Yodsin N, Sriphumrat K, Mano P, Kongpatpanich K and Namuangruk S
The development of fast and non-invasive techniques to detect SARS-CoV-2 virus at the early stage of the infection would be highly desirable to control the COVID-19 outbreak. Metal-organic frameworks (MOFs) are porous materials with uniform porous structures and tunable pore surfaces, which would be essential for the selective sensing of the specific COVID-19 biomarkers. However, the use of MOFs materials to detect COVID-19 biomarkers has not been demonstrated so far. In this work, for the first time, we employed the density functional theory calculations to investigate the specific interactions of MOFs and the targeted biomarkers, in which the interactions were confirmed by experiment. The five dominant COVID-19 biomarkers and common exhaled gases are comparatively studied by exposing them to MOFs, namely MIL-100(Al) and MIL-100(Fe). The adsorption mechanism, binding site, adsorption energy, recovery time, charge transfer, sensing response, and electronic structures are systematically investigated. We found that MIL-100(Fe) has a higher sensing performance than MIL-100(Al) in terms of sensitivity and selectivity. MIL-100(Fe) shows sensitive to COVID-19 biomarkers, namely 2-methylpent-2-enal and 2,4-octadiene with high sensing responses as 7.44 x 10 and 9 x 10 which are exceptionally higher than those of the common gases which are less than 6. The calculated recovery times of 0.19 and 1.84 x 10 s are short enough to be a resuable sensor. An experimental study also showed that the MIL-100(Fe) provides a sensitivity toward 2-methylpent-2-enal. In conclusion, we suggest that MIL-100(Fe) could be used as a potential sensor for the exhaled breath analysis. We hope that our research can aid in the development of a biosensor for quick and easy COVID-19 biomarker detection in order to control the current pandemic.
Modification of face masks with zeolite imidazolate framework-8: A tool for hindering the spread of COVID-19 infection
Givirovskaia D, Givirovskiy G, Haapakoski M, Hokkanen S, Ruuskanen V, Salo S, Marjomäki V, Ahola J and Repo E
The worldwide spread of the SARS-CoV-2 virus has continued to accelerate, putting a considerable burden on public health, safety, and the global economy. Taking into consideration that the main route of virus transmission is via respiratory particles, the face mask represents a simple and efficient barrier between potentially infected and healthy individuals, thus reducing transmissibility per contact by reducing transmission of infected respiratory particles. However, long-term usage of a face mask leads to the accumulation of significant amounts of different pathogens and viruses onto the surface of the mask and can result in dangerous bacterial and viral co-infections. Zeolite imidazolate framework-8 (ZIF-8) has recently emerged as an efficient water-stable photocatalyst capable of generating reactive oxygen species under light irradiation destroying dangerous microbial pathogens. The present study investigates the potential of using ZIF-8 as a coating for face masks to prevent the adherence of microbial/viral entities. The results show that after 2 h of UV irradiation, a polypropylene mask coated with ZIF-8 nanostructures is capable of eliminating and bacteriophage MS2 with 99.99% and 95.4% efficiencies, respectively. Furthermore, low-pathogenic HCoV-OC43 coronavirus was eliminated by a ZIF-8-modified mask with 100% efficiency already after 1 h of UV irradiation. As bacteriophage MS2 and HCoV-OC43 coronavirus are commonly used surrogates of the SARS-CoV-2 virus, the revealed antiviral properties of ZIF-8 can represent an important step in designing efficient protective equipment for controlling and fighting the current COVID-19 pandemic.
Niclosamide encapsulated in mesoporous silica and geopolymer: A potential oral formulation for COVID-19
Piao H, Rejinold NS, Choi G, Pei YR, Jin GW and Choy JH
COVID-19 is a rapidly evolving emergency, for which there have been no specific medication found yet. Therefore, it is necessary to find a solution for this ongoing pandemic with the aid of advanced pharmaceutics. What is proposed as a solution is the repurposing of FDA approved drug such as niclosamide (NIC) having multiple pathways to inactivate the SARS-CoV-2, the specific virion that induces COVID-19. However, NIC is hardly soluble in an aqueous solution, thereby poor bioavailability, resulting in low drug efficacy. To overcome such a disadvantage, we propose here an oral formulation based on Tween 60 coated drug delivery system comprised of three different mesoporous silica biomaterials like MCM-41, SBA-15, and geopolymer encapsulated with NIC molecules. According to the release studies under a gastro/intestinal solution, the cumulative NIC release out of NIC-silica nanohybrids was found to be greatly enhanced to ~97% compared to the solubility of intact NIC (~40%) under the same condition. We also confirmed the therapeutically relevant bioavailability for NIC by performing pharmacokinetic (PK) study in rats with NIC-silica oral formulations. In addition, we discussed in detail how the PK parameters could be altered not only by the engineered porous structure and property, but also by interfacial interactions between ion-NIC dipole, NIC-NIC dipoles and/or pore wall-NIC van der Waals in the intra-pores of silica nanoparticles.
Impact of the antibiotic-cargo from MSNs on Gram-positive and Gram-negative bacterial biofilms
Aguilar-Colomer A, Colilla M, Izquierdo-Barba I, Jiménez-Jiménez C, Mahillo I, Esteband J and Vallet-Regí M
Mesoporous silica nanoparticles (MSNs) are promising drug nanocarriers for infection treatment. Many investigations have focused on evaluating the capacity of MSNs to encapsulate antibiotics and release them in a controlled fashion. However, little attention has been paid to determine the antibiotic doses released from these nanosystems that are effective against biofilm during the entire release time. Herein, we report a systematic and quantitative study of the direct effect of the antibiotic-cargo released from MSNs on Gram-positive and Gram-negative bacterial biofilms. Levofloxacin (LVX), gentamicin (GM) and rifampin (RIF) were separately loaded into pure-silica and amino-modified MSNs. This accounts for the versatility of these nanosystems since they were able to load and release different antibiotic molecules of diverse chemical nature. Biological activity curves of the released antibiotic were determined for both bacterial strains, which allowed to calculate the active doses that are effective against bacterial biofilms. Furthermore, in vitro biocompatibility assays on osteoblast-like cells were carried out at different periods of times. Albeit a slight decrease in cell viability was observed at the very initial stage, due to the initial burst antibiotic release, the biocompatibility of these nanosystems is evidenced since a recovery of cell viability was achieved after 72 h of assay. Biological activity curves for GM released from MSNs exhibited sustained patterns and antibiotic doses in the 2-6 μg/mL range up to 100 h, which were not enough to eradicate biofilm. In the case of LVX and RIF first-order kinetics featuring an initial burst effect followed by a sustained release above the MIC up to 96 h were observed. Such doses reduced by 99.9% bacterial biofilm and remained active up to 72 h with no emergence of bacterial resistance. This pioneering research opens up promising expectations in the design of personalized MSNs-based nanotherapies to treat chronic bone infection.
Development and evaluation of copper-containing mesoporous bioactive glasses for bone defects therapy
Jiménez-Holguín J, Sánchez-Salcedo S, Vallet-Regí M and Salinas AJ
Mesoporous bioactive glasses (MBGs) are gaining increasing interest in the design of new biomaterials for bone defects treatment. An important research trend to enhance their biological behavior is the inclusion of moderate amounts of oxides with therapeutical action such as CuO. MBGs with composition (85-x)SiO-10-CaO-5PO-xCuO (x = 0, 2.5 or 5 mol-%) were synthesized, investigating the influence of the CuO content and some synthesis parameters in their properties. Two series were developed; first one used HCl as catalyst and chlorides as CaO and CuO precursors, second one, used HNO and nitrates. MBGs of chlorides family exhibited calcium/copper phosphate nanoparticles between 10 and 20 nm in size. Nevertheless, CuO-containing MBGs of nitrates family showed metallic copper nanoparticles larger than 50 nm as well as quicker in vitro bioactive responses. Thus, MBGs of the nitrate series were coated by an apatite-like layer after 24 h soaked in simulated body fluid (SBF) a remarkably short period for a MBG containing 5% of CuO. A model, focused in the location of copper in the glass network, was proposed to relate nanostructure and in vitro behaviour. Moreover, after 24 h soaked in MEM or THB culture media, all the MBGs released therapeutic amounts of Ca and Cu ions. Because the quick bioactive response in SBF, the capacity to host biomolecules in their pores and to release therapeutic concentrations of Ca and Cu ions, MBGs of the nitrate families are proposed as excellent biomaterials for bone regeneration.
Self-diffusion of pure and mixed gases in mixed-linker zeolitic imidazolate framework-7-8 by high field diffusion NMR
Berens S, Hillman F, Jeong HK and Vasenkov S
Self-diffusion of pure gases including carbon dioxide, methane, ethylene, ethane, and xenon as well as selected two-component mixtures was studied in hybrid zeolitic imidazolate framework-7-8 (ZIF-7-8) crystals using pulsed field gradient (PFG) NMR. This material was formed by mixing 2-methylimidazolate (ZIF-8 linker) and bulkier benzimidazolate (ZIF-7 linker) in the same framework. The intracrystalline diffusion data measured in mixed-linker ZIF-7-8 was compared with the corresponding data in the parent ZIF-8 material. It was found that under the same or comparable experimental conditions the intracrystalline gas diffusion was always slower in ZIF-7-8 than in ZIF-8. This observation is consistent with the expected lower pore aperture size in ZIF-7-8 than in ZIF-8. At the same time, the ethane/ethylene diffusion selectivity was found to be similar in both ZIFs. It was also observed that for the pure studied gases larger than carbon dioxide the diffusivity ratios in ZIF-8 and ZIF-7-8 do not increase with increasing gas size at all loading pressures used. All these data are attributed to greater framework flexibility effects in ZIF-7-8 than ZIF-8. Such effects manifest themselves in a distortion and/or increase in the aperture size in the presence of large sorbates due to linker flexibility.
Using double pulsed-field gradient MRI to study tissue microstructure in traumatic brain injury (TBI)
Komlosh ME, Benjamini D, Hutchinson EB, King S, Haber M, Avram AV, Holtzclaw LA, Desai A, Pierpaoli C and Basser PJ
Double pulsed-field gradient (dPFG) MRI is proposed as a new sensitive tool to detect and characterize tissue microstructure following diffuse axonal injury. In this study dPFG MRI was used to estimate apparent mean axon diameter in a diffuse axonal injury animal model and in healthy fixed mouse brain. Histological analysis was used to verify the presence of the injury detected by MRI.
Towards clinically feasible relaxation-diffusion correlation MRI using MADCO
Benjamini D and Basser PJ
Multidimensional relaxation-diffusion correlation (REDCO) NMR is an assumption-free method that measures how water is distributed within materials. Although highly informative, REDCO had never been used in clinical MRI applications because of the large amount of data it requires, leading to infeasible scan times. A recently suggested novel experimental design and processing framework, marginal distributions constrained optimization (MADCO), was used here to accelerate and improve the reconstruction of such MRI correlations. MADCO uses the 1D marginal distributions as information, which provide powerful constraints when 2D spectra are reconstructed, while their estimation requires an order of magnitude less data than conventional 2D approaches. In this work we experimentally examined the impact the complexity of the correlation distribution has on the accuracy and robustness of the estimates. MADCO and a conventional method were compared using two - phantoms that differ in the proximity of their peaks, leading to a relatively simple case as opposed to a more challenging one. The phantoms were used to vet the achievable data compression using MADCO under these conditions. MADCO required ~43 and ~30 less data than the conventional approach for the simple and complex spectra, respectively, making it potentially feasible for preclinical and even clinical applications.
Biomimetic hierarchical walnut kernel-like and erythrocyte-like mesoporous silica nanomaterials: controllable synthesis and versatile applications
Hao N, Nie Y and Zhang JXJ
We developed a facile and controllable strategy to fabricate biomimic walnut kernel-like mesoporous silica nanomaterial (WMSN) and erythrocyte-like mesoporous silica nanomaterial (EMSN). The former possesses unique multi-shell hollow structure and surface wrinkles while the latter has special multi-stack structure and bowl-shaped depression. These hierarchical materials with distinct structures can be finely tuned by changing the molar ratios of two surfactants, cetyltrimethylammonium bromide and 11-mercaptoundecanoic acid. The mechanism of structural formation through intermolecular interactions was revealed and validated experimentally. The promising potential applications of WMSN and EMSN in adsorption, cellular imaging, drug delivery, and cancer theranostics were further identified.
Zeolite Y Adsorbents with High Vapor Uptake Capacity and Robust Cycling Stability for Potential Applications in Advanced Adsorption Heat Pumps
Li X, Narayanan S, Michaelis VK, Ong TC, Keeler EG, Kim H, McKay IS, Griffin RG and Wang EN
Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg,Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the labscale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N sorption, Al/Si MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2 law and D-R equation regressions. Among these, close examination of sorption isotherms for HO and N adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications.
Overhauser Dynamic Nuclear Polarization-Enhanced NMR Relaxometry
Franck JM, Kausik R and Han S
We present a new methodological basis for selectively illuminating a dilute population of fluid within a porous medium. Specifically, transport in porous materials can be analyzed by now-standard nuclear magnetic resonance (NMR) relaxometry and NMR pulsed field gradient (PFG) diffusometry methods in combination with with the prominent NMR signal amplification tool, dynamic nuclear polarization (DNP). The key components of the approach introduced here are (1) to selectively place intrinsic or extrinsic paramagnetic probes at the site or local volume of interest within the sample, (2) to amplify the signal from the local solvent around the paramagnetic probes with Overhauser DNP, which is performed and under ambient conditions, and (3) to observe the ODNP-enhanced solvent signal with 1D or 2D NMR relaxometry methods, thus selectively amplifying only the relaxation dynamics of the fluid that resides in or percolates through the local porous volume that contains the paramagnetic probe. Here, we demonstrate the proof of principle of this approach by selectively amplifying the NMR signal of only one solvent population, which is in contact with a paramagnetic probe and occluded from a second solvent population. An apparent one-component relaxation decay is shown to actually contain two distinct solvent populations. The approach outlined here should be universally applicable to a wide range of other 1D and 2D relaxometry and PFG diffusometry measurements, including - or - correlation maps, where the occluded population containing the paramagnetic probes can be selectively amplified for its enhanced characterization.
Characterization of Anomalous Diffusion in Porous Biological Tissues Using Fractional Order Derivatives and Entropy
Magin RL, Ingo C, Colon-Perez L, Triplett W and Mareci TH
In this high-resolution magnetic resonance imaging (MRI) study at 17.6 Tesla of a fixed rat brain, we used the continuous time random walk theory (CTRW) for Brownian motion to characterize anomalous diffusion. The complex mesoporus structure of biological tissues (membranes, organelles, and cells) perturbs the motion of the random walker (water molecules in proton MRI) introducing halts between steps (waiting times) and restrictions on step sizes (jump lengths). When such waiting times and jump lengths are scaled with probability distributions that follow simple inverse power laws (, ||) non-Gaussian motion gives rise to sub- and super- diffusion. In the CTRW approach, the Fourier transform yields a solution to the generalized diffusion equation that can be expressed by the Mittag-Leffler function (MLF), (- ||Δ). We interrogated both white and gray matter regions in a 1 slice of a fixed rat brain (190 μ in plane resolution) with diffusion weighted MRI experiments using -values up to 25,000 /, by independently varying and Δ. When fitting these data to our model, the fractional order parameters, α and β, and the entropy measure, [Formula: see text], were found to provide excellent contrast between white and gray matter and to give results that were sensitive to the type of diffusion experiment performed.
Non-destructively shattered mesoporous silica for protein drug delivery
Lei C, Chen B, Li X, Qi W and Liu J
Mesoporous silicas have been extensively used for entrapping small chemical molecules and biomacromolecules for drug delivery. We hypothesize that the loading density of biomacromlecules such as proteins in mesoporous silicas could be limited due to disordering in the pore structure and long diffusion time in the pore channels. We shattered mesoporous silicas non-destructively resulting in improved intramesoporous structures and reduced particle sizes in aqueous solutions by a powerful sonication, where the mesoporous structures were still well maintained. The sonication-shattered mesoporous silica can increase the protein loading density to nearly 2.7 times as high as that of the non-shattered one, demonstrating that significantly more mesopore space of the silica could be accessible by the protein molecules, which may result in more sustained protein drug delivery.
The use of lanthanide luminescence as a reporter in the solid state: Desymmetrization of the prochiral layers of γ-zirconium phosphate/phosphonate and circularly polarized luminescence
Brunet E, Jiménez L, de Victoria-Rodriguez M, Luu V, Muller G, Juanes O and Rodríguez-Ubis JC
Solid-state CPL measurements were performed for the first time on hybrid, laminar materials based on γ-ZrP pillared with organic diphosphonates. Ad hoc optically pure diphosphonates were synthesized and the luminescence properties of their complexation with Tb(III) were verified in solution. CD and CPL measurements showed that the bistriazolylpyridine chromophores bonded to the metal provided an effective chiral environment that produced significant signals. In the case of the γ-ZrP-derived materials, experimental evidence and simple molecular modeling hinted to the occurrence of supramolecular chirality in the particles, induced by the intrinsic dissymmetry of the organic diphosphonates or by the intercalation of chiral species such as 1-phenethylamine. Chirality at the supramolecular level was revealed in the solid state by the CPL signals measured from reporter Tb(III) ions intercalated in the hybrid matrix.
Modelling the adsorption of short alkanes in protonated chabazite: The impact of dispersion forces and temperature
Göltl F and Hafner J
The adsorption of alkanes in a protonated zeolite has been investigated at different levels of theory. At the lowest level we use density-functional theory (DFT) based on semi-local (gradient-corrected) functionals which account only for the interaction of the molecule with the acid site. To describe the van der Waals (vdW) interactions between the saturated molecule and the inner wall of the zeolite we use (i) semi-empirical pair interactions, (ii) calculations using a non-local correlation functional designed to include vdW interactions, and (iii) an approach based on calculations of the dynamical response function within the random-phase approximation (RPA). The effect of finite temperature on the adsorption properties has been studied by performing molecular dynamics (MD) simulations based on forces derived from DFT plus semi-empirical vdW corrections. The simulations demonstrate that even at room temperature the binding of the molecule to the acid site is frequently broken such that only the vdW interaction between the alkane and the zeolite remains. The finite temperature adsorption energy is calculated as the ensemble average over a sufficiently long molecular dynamics run, it is significantly reduced compared to the  = 0 K limit. At a higher level of theory where MD simulations would be prohibitively expensive we propose a simple scheme based on the averaging over the adsorption energies in the acid and in the purely siliceous zeolite to account for temperature effects. With these corrections we find an excellent agreement between the RPA predictions and experiment.
Slow Release Kinetics of Mitoxantrone from Ordered Mesoporous Carbon Films
Labiano A, Dai M, Taylor D, Young WS, Epps TH, Rege K and Vogt BD
High porosity and surface areas of ordered mesoporous materials provide substantial capacity for loading of guest molecules and the well-defined morphology of such materials can control their transport for controlled release. Here, the loading and release of mitoxantrone from unmodified ordered mesoporous carbon films is monitored using UV/Vis spectroscopy. Organic-organic self-assembly of Pluronic F127 with phenolic resin leads to interconnected elliptical pores (≈2 nm) in the film after carbonization. Interestingly, the total loading (2.6 ± 0.4 μg/cm) and release of mitoxantrone is independent of film thickness (50-400 nm), suggesting diffusion limitations in pore filling. With alternative template, the pore size increases to ≈5 nm and the mitoxantrone loading increases to 3.5 ± 0.9 μg/cm, but the loading still remains thickness independent. Using phosphate buffered saline at 37 °C, less than 60 % of the loaded mitoxantrone is readily released from the mesoporous carbon films over a two-week period. The release profile includes an initial burst with a modest fraction (< 20 %) of the loaded drug released within the first day, followed by a near linear release over the subsequent 5-9 days. Interestingly, the smaller pores (ca. 2 nm) release nearly 50 % more mitoxantrone over 2 weeks than the larger pores (ca. 5 nm), despite the lower initial loading. These results illustrate potential limitations as well as opportunities for the use of highly hydrophobic porous materials for the controlled release of hydrophobic biologically active compounds as drug delivery systems.
Enzymatic conversion of CO(2) to bicarbonate in functionalized mesoporous silica
Yu Y, Chen B, Qi W, Li X, Shin Y, Lei C and Liu J
We report here a concept converting carbon dioxide to biocarbonate in a biomimetic nanoconfiguration. Carbonic anhydrase (CA), the fastest enzyme that can covert carbon dioxide to bicarbonate, can be spontaneously entrapped in carboxylic acid group-functionalized mesoporous silica (HOOC-FMS) with super-high loading density (up to 0.5 mg of protein/mg of FMS) in sharp contrast to normal porous silica. The binding of CA to HOOC-FMS resulted in a partial conformational change comparing to the enzyme free in solution, but it can be overcome with increased protein loading density. The higher the protein loading density, the less conformational change, hence the higher enzymatic activity and the higher enzyme immobilization efficiency (up to >60%). The released enzyme still displayed the native conformational structure and the same high enzymatic activity as that prior to the enzyme entrapment, indicating that the conformational change resulted from the electrostatic interaction of CA with HOOC-FMS was not permanent. This work may provide a new approach converting carbon dioxide to biocarbonate that can be integrated with the other part of biosynthesis process for the assimilation of carbon dioxide.
Synthesis and Properties of Nanoparticle Forms Saponite Clay, Cancrinite Zeolite and Phase Mixtures Thereof
Shao H and Pinnavaia TJ
The low-temperature synthesis (90°C) of nanoparticle forms of a pure phase smectic clay (saponite) and zeolite (cancrinite) is reported, along with phase mixtures thereof. A synthesis gel corresponding to the Si:Al:Mg unit cell composition of saponite (3.6:0.40:3.0) and a NaOH/Si ratio of 1.39 affords the pure phase clay with disordered nanolayer stacking. Progressive increases in the NaOH/Si ratio up to a value of 8.33 results in the co-crystallization of first garronite and then cancrinite zeolites with nanolath morphology. The resulting phase mixtures exhibit a compound particulate structure of intertwined saponite nanolayers and cancrinite nanolaths that cannot be formed through physical mixing of the pure phase end members. Under magnesium-free conditions, pure phase cancrinite nanocrystals are formed. The Si/Al ratio of the reaction mixture affects the particle morphology as well as the chemical composition of the cancrinite zeolite. Ordinarily, cancrinite crystallizes with a Si/Al ratio of 1.0, but a silicon-rich form of the zeolite (Si/Al=1.25) is crystallized at low temperature from a silica rich synthesis gel, as evidenced by (29)Si NMR spectroscopy and XEDS-TEM. Owing to the exceptionally high external surface areas of the pure phase clay (875 m(2)/g) and zeolite end members (8.9 - 40 m(2)/g), as well as their unique mixed phase composites (124 - 329 m(2)/g), these synthetic derivatives are promising model nanoparticles for studies of the bioavailability of poly-aromatic hydrocarbons immobilized in silicate bearing sediments and soils.
Large-Pore Mesoporous Silica with Three-Dimensional Wormhole Framework Structures
Park I and Pinnavaia TJ
Large-pore mesoporous silica with 3D wormhole framework structures (denoted MSU-J) are prepared through a supramolecular hydrogen-bonding assembly pathway from low-cost sodium silicate as the silica source and commercially available mono- and triamine Jeffamine and Surfonamine surfactants as structure-directing porogens. The calcined mesostructures exhibit large pore sizes (up to 8.2 nm), surface areas (632-1030 m(2)/g) and pore volumes (0.5-2.0 cm(3)/g), depending on the surfactant chain length and synthesis temperature (25-65 °C). The textural properties of these new wormhole mesostructures are comparable to those of hexagonal SBA-15 derivatives and large pore MCM-48. However, unlike the SBA-15 structure type, wherein the 3D pore network is formed by connecting 1D cylindrical mesopores through micropores, MSU-J mesophases have wormhole framework structures containing fully interconnected 3D mesopores that can minimize the diffusion limitations often encountered in adsorption and chemical catalysis. Also, unlike large pore MCM-48, which requires cost-intensive tetraethylorthosilicate as a silica source and the use of a co-surfactant as a pore expander under strong acid conditions, MSU-J mesostructures are assembled from low cost sodium silicate in the presence of a single Jeffamine or Surfonamine porogen at near-neutral pH.
An experimental and modelling study of water vapour adsorption on SBA-15
Centineo A, Nguyen HGT, Espinal L, Horn JC and Brandani S
Many publications have been dedicated to the study of water vapour adsorption on the ordered silica-based material Santa Barbara Amorphous-15 (SBA-15). However, two aspects still need to be clarified: whether the solid is stable under repeated adsorption-desorption cycles and whether the experimental data can be predicted with a simple yet accurate analytical equilibrium model. In this study, SBA-15 showed good long-term structural stability when exposed to repeated adsorption-desorption cycles using water vapour as adsorptive up to 90 % relative humidity at 288 K, 298 K and 308 K. The reproducibility of the equilibrium isotherm was investigated using different commercial gravimetric instruments designed for water vapour adsorption measurements. The experimental measurements show a modification of the microporous structure of the solid after the first full isotherm measurement. Some water is strongly adsorbed and trapped during the first experiment on a fresh sample. After the first adsorption-desorption cycle, the water isotherm is characterized by a low value of the Henry law constant and by a nearly vertical capillary condensation and evaporation branches. Quite interestingly, the experimental scanning curves do not simply cross from one branch to the other as would be expected for cylindrical independent pores. The experimental data are correlated using new analytical models able to predict the amount adsorbed in the entire concentration range for the main adsorption-desorption branches and for the adsorption-desorption scanning curves.