-BuNI/KSO Mediated Csp-Csp Bond Cleavage - Transformylation from -Anisaldehyde to Primary Amides
-BuNI/KSO mediated transformylation from -anisaldehyde to primary amides is reported. The mechanistic studies suggest the reaction occurs via a single electron transfer pathway. Based on the DFT electronic structure calculations of various reaction pathways, the most plausible mechanism involves the formation of a phenyl radical cation and an arenium ion as the key intermediates. It represents the first example where -anisaldehyde is employed as a formyl source via a non-metal mediated Csp-Csp bond cleavage.
Enantioselective Syntheses of 3,4-Dihydropyrans Employing Isochalcogenourea-Catalyzed Formal (4+2)-Cycloadditions of Allenoates
We herein successfully demonstrate the use of chiral isochalcogenoureas as Lewis Base catalysts for a variety of (4+2)-cycloaddition reactions of allenoates and different Michael acceptors. In all cases the same structural key-motive, a dihydropyran with a (Z)-configurated exocyclic double bond could be accessed as the major regio- and diastereoisomer in an enantioselective manner. Furthermore, these chiral dihydropyrans were successfully engaged in different follow-up transformations.
Mannich-Type Condensation and Domino Quinazolinone-Amidine Rearrangement Affords Ring-Fused Mackinazolinones with Anti-Amoebic Activity
A three-step synthesis of anti-amoebic, ring-fused mackinazolinones has been developed. A Mannich-type reaction between quinazolin-4-ones and -Cbz propanal in the presence of AgOTf afforded quinazolinones (19-94% isolated yield) bearing a newly formed heterocycle with an alkylamine appendage that, upon -Cbz deprotection and basification, triggered a domino rearrangement to afford 45 separable, ring-fused products. Several compounds inhibited growth of parasites that can cause a lethal human brain infection. Thus, the methodology provides immediate access to a promising anti-amoebic scaffold.
Photocatalyzed Direct α-Alkylation of Esters Using Styrenes
A mild photocatalyzed approach to achieve the α-alkylation of esters via formation of an α -radical is disclosed here. Cesium enolates of esters were generated using CsCO as a base. A subsequent photocatalyzed oxidation at the α-carbon of these enolates produced an α-radical that was added into activated alkenes. This is the first example accessing the α-carbon radical of esters in photoredox catalyed transformations.
Merger of Visible Light-Driven Chiral Organocatalysis and Continuous Flow Chemistry: An Accelerated and Scalable Access into Enantioselective α-Alkylation of Aldehydes
The electron donor-acceptor complex-enabled asymmetric photochemical alkylation strategy holds potential to attain elusive chiral α-alkylated aldehydes without an external photoredox catalyst. The photosensitizer-free conditions are beneficial concerning process costs and sustainability. However, lengthy organocatalyst preparation steps as well as limited productivity and difficult scalability render the current approaches unsuitable for synthesis on enlarged scales. Inspired by these limitations, a protocol was developed for the enantioselective α-alkylation of aldehydes based on the synergistic combination of visible light-driven asymmetric organocatalysis and a controlled continuous flow reaction environment. With the aim to reduce process costs, a commercially available chiral catalyst has been exploited to achieve photosensitizer-free enantioselective α-alkylations using phenacyl bromide derivates as alkylating agents. As a result of elaborate optimization and process development, the present flow strategy furnishes an accelerated and inherently scalable entry into enantioenriched α-alkylated aldehydes including a chiral key intermediate of the antirheumatic esonarimod.
Biocatalytic Transamination of Aldolase-Derived 3-Hydroxy Ketones
Although optical pure amino alcohols are in high demand due to their widespread applicability, they still remain challenging to synthesize, since commonly elaborated protection strategies are required. Here, a multi-enzymatic methodology is presented that circumvents this obstacle furnishing enantioenriched 1,3-amino alcohols out of commodity chemicals. A Type I aldolase forged the carbon backbone with an enantioenriched aldol motif, which was subsequently subjected to enzymatic transamination. A panel of 194 TAs was tested on diverse nine aldol products prepared through different nucleophiles and electrophiles. Due to the availability of ()- and ()-selective TAs, both diastereomers of the 1,3-amino alcohol motif were accessible. A two-step process enabled the synthesis of the desired amino alcohols with up to three chiral centers with up to >97 in the final products.
Organic Acid to Nitrile: A Chemoenzymatic Three-Step Route
Various widely applied compounds contain cyano-groups, and this functional group serves as a chemical handle for a whole range of different reactions. We report a cyanide free chemoenzymatic cascade for nitrile synthesis. The reaction pathway starts with a reduction of carboxylic acid to aldehyde by carboxylate reductase enzymes (CARs) applied as living cell biocatalysts. The second - chemical - step includes oxime formation with hydroxylamine. The final direct step from oxime to nitrile is catalyzed by aldoxime dehydratases (Oxds). With compatible combinations of a CAR and an Oxd, applied in one-pot two-step reactions, several aliphatic and aryl-aliphatic target nitriles were obtained in more than 80% conversion. Phenylacetonitrile, for example, was prepared in 78% isolated yield. This chemoenzymatic route does not require cyanide salts, toxic metals, or undesired oxidants in contrast to entirely chemical procedures.
Synthesis of Saturated N-Heterocycles via a Catalytic Hydrogenation Cascade
Saturated N-heterocycles are prominent motifs found in various natural products and pharmaceuticals. Despite the increasing interest in this class of compounds, the synthesis of saturated bicyclic azacycles requires tedious multi-step syntheses. Herein, we present a one-pot protocol for the synthesis of octahydroindoles, decahydroquinolines, and octahydroindolizines through a cascade reaction.
Combined Photoredox and Carbene Catalysis for the Synthesis of γ-Aryloxy Ketones
-heterocyclic carbenes (NHCs) have emerged as catalysts for the construction of C-C bonds in the synthesis of substituted ketones under single-electron processes. Despite these recent reports, there still remains a need to increase the utility and practicality of these reactions by exploring new radical coupling partners. Herein, we report the synthesis of γ-aryloxyketones via combined NHC/photoredox catalysis. In this reaction, an α-aryloxymethyl radical is generated via oxidation of an aryloxymethyl potassium trifluoroborate salt, which is then added into styrene derivatives to provide a stabilized benzylic radical. Subsequent radical-radical coupling reaction with an azolium radical affords the γ-aryloxy ketone products.
Dimsyl Anion Enables Visible-Light-Promoted Charge Transfer in Cross-Coupling Reactions of Aryl Halides
A methodology is reported for visible-light-promoted synthesis of unsymmetrical chalcogenides enabled by dimsyl anion in the absence of transition-metals or photoredox catalysts. The cross-coupling reaction between aryl halides and diaryl dichalcogenides proceeds with electron-rich, electron-poor, and heteroaromatic moieties. Mechanistic investigations using UV-Vis spectroscopy, time-dependent density functional theory (TD-DFT) calculations, and control reactions suggest that dimsyl anion forms an electron-donor-acceptor (EDA) complex capable of absorbing blue light, leading to a charge transfer responsible for generation of aryl radicals from aryl halides. This previously unreported mechanistic pathway may be applied to other light-induced transformations performed in DMSO in the presence of bases and aryl halides.
Catalytic Formal Hydroamination of Allylic Alcohols Using Manganese PNP-Pincer Complexes
Several manganese-PNP pincer catalysts for the formal hydroamination of allylic alcohols are presented. The resulting γ-amino alcohols are selectively obtained in high yields applying in a tandem process under mild conditions.
A Mechanistic Probe into 1,2- Glycoside Formation Catalyzed by Phenanthroline and Further Expansion of Scope
Phenanthroline, a rigid and planar compound with two fused pyridine rings, has been used as a powerful ligand for metals and a binding agent for DNA/RNA. We discovered that phenanthroline could be used as a nucleophilic catalyst to efficiently access high yielding and diastereoselective α-1,2- glycosides through the coupling of hydroxyl acceptors with α-glycosyl bromide donors. We have conducted an extensive investigation into the reaction mechanism, wherein the two glycosyl phenanthrolinium ion intermediates, a C chair-liked β-conformer and a B boat-like α-conformer, have been detected in a ratio of 2:1 (β:α) using variable temperature NMR experiments. Furthermore, NMR studies illustrate that a hydrogen bonding is formed between the second nitrogen atom of phenanthroline and the C1-anomeric hydrogen of sugar moiety to stabilize the phenanthrolinium ion intermediates. To obtain high α-1,2- stereoselectivity, a Curtin-Hammett scenario was proposed wherein interconversion of the C chair-like β-conformer and B boat-like α-conformer is more rapid than nucleophilic addition. Hydroxyl attack takes place from the α-face of the more reactive C β-phenanthrolinium intermediate to give an α-anomeric product. The utility of the phenanthroline catalysis is expanded to sterically hindered hydroxyl nucleophiles and chemoselective coupling of an alkyl hydroxyl group in the presence of a free C1-hemiacetal. In addition, the phenanthroline-based catalyst has a pronounced effect on site-selective couplings of triol motifs and orthogonally activates the anomeric bromide leaving group over the anomeric fluoride and sulfide counterparts.
Enantioselective Organocatalytic Synthesis of Bicyclic Resorcinols an Intramolecular Friedel-Crafts-Type 1,4-Addition: Access to Cannabidiol Analogues
The organocatalytic transformation of resorcinols is extremely rare. In this article, we report a highly enantioselective, organocatalytic intramolecular cyclization of these systems by a Friedel-Crafts-type 1,4-addition using a Jørgensen-Hayashi-like organocatalyst with a large silyl protecting group, and show that heat improves reaction yield with virtually no detriment to enantioselectivity. A variety of bicyclic resorcinols were obtained with excellent enantioselectivities (up to 94%). To show the utility of these constructs, and as part of a wider project involving the synthesis of cannabinoid-like compounds, the resorcinol formed was used to generate both 'normal' and 'abnormal' cannabidiol (CBD) derivatives which were shown to have anticonvulsant activity.
Catalyst-Free Decarbonylative Trifluoromethylthiolation Enabled by Electron Donor-Acceptor Complex Photoactivation
A catalyst- and additive-free decarbonylative trifluoromethylthiolation of aldehyde feedstocks has been developed. This operationally simple, scalable, and open-to-air transformation is driven by the selective photoexcitation of electron donor-acceptor (EDA) complexes, stemming from the association of 1,4-dihydropyridines (donor) with -(trifluoromethylthio)phthalimide (acceptor), to trigger intermolecular single-electron transfer events under ambient- and visible light-promoted conditions. Extension to other electron acceptors enables the synthesis of thiocyanates and thioesters, as well as the difunctionalization of [1.1.1] propellane. The mechanistic intricacies of this photochemical paradigm are elucidated through a combination of experimental efforts and high-level quantum mechanical calculations [dispersion-corrected (U)DFT, DLPNO-CCSD(T), and TD-DFT]. This comprehensive study highlights the necessity for EDA complexation for efficient alkyl radical generation. Computation of subsequent ground state pathways reveals that S2 addition of the alkyl radical to the intermediate radical EDA complex is extremely exergonic and results in a charge transfer event from the dihydropyridine donor to the -(trifluoromethylthio)phthalimide acceptor of the EDA complex. Experimental and computational results further suggest that product formation also occurs S2 reaction of alkyl radicals with 1,2-bis(trifluoromethyl)disulfane, generated in-situ through combination of thiyl radicals.
Chemoenzymatic Production of Enantiocomplementary 2-Substituted 3-Hydroxycarboxylic Acids from L-α-Amino Acids
A two-enzyme cascade reaction plus in situ oxidative decarboxylation for the transformation of readily available canonical and non-canonical L-α-amino acids into 2-substituted 3-hydroxy-carboxylic acid derivatives is described. The biocatalytic cascade consisted of an oxidative deamination of L-α-amino acids by an L-α-amino acid deaminase from , rendering 2-oxoacid intermediates, with an ensuing aldol addition reaction to formaldehyde, catalyzed by metal-dependent ()- or ()-selective carboligases namely 2-oxo-3-deoxy-l-rhamnonate aldolase (YfaU) and ketopantoate hydroxymethyltransferase (KPHMT), respectively, furnishing 3-substituted 4-hydroxy-2-oxoacids. The overall substrate conversion was optimized by balancing biocatalyst loading and amino acid and formaldehyde concentrations, yielding 36-98% aldol adduct formation and 91- 98% ee for each enantiomer. Subsequent in situ follow-up chemistry via hydrogen peroxide-driven oxidative decarboxylation afforded the corresponding 2-substituted 3-hydroxycarboxylic acid derivatives.
Discovery of New Carbonyl Reductases Using Functional Metagenomics and Applications in Biocatalysis
Enzyme discovery for use in the manufacture of chemicals, requiring high stereoselectivities, continues to be an important avenue of research. Here, a sequence directed metagenomics approach is described to identify short chain carbonyl reductases. PCR from a metagenomic template generated 37 enzymes, with an average 25% sequence identity, twelve of which showed interesting activities in initial screens. Six of the most productive enzymes were then tested against a panel of 21 substrates, including bulkier substrates that have been noted as challenging in biocatalytic reductions. Two enzymes were selected for further studies with the Wieland Miescher ketone. Notably, enzyme SDR-17, when co-expressed with a co-factor recycling system produced the -(4a,5) isomer in excellent isolated yields of 89% and 99% . These results demonstrate the viability of a sequence directed metagenomics approach for the identification of multiple homologous sequences with low similarity, that can yield highly stereoselective enzymes with applicability in industrial biocatalysis.
Asymmetric Allylation Catalyzed by Chiral Phosphoric Acids: Stereoselective Synthesis of Tertiary Alcohols and a Reagent-Based Switch in Stereopreference
The substrate scope of the asymmetric allylation with zinc organyls catalyzed by 3,3-bis(2,4,6-triisopropylphenyl)-1,1-binaphthyl-2,2-diyl hydrogenphosphate (TRIP) has been extended to non-cyclic ester organozinc reagents and ketones. Tertiary chiral alcohols are obtained with ee's up to 94% and two stereogenic centers can be created. Compared to the previous lactone reagent the stereopreference switches almost completely, proving the fact that the nature of the organometallic compound is of immense importance for the asymmetry of the product.
Selectivity in the Elaboration of Bicyclic Borazarenes
Among aromatic compounds, borazarenes represent a significant class of isosteres in which carbon-carbon bonds have been replaced by B-N bonds. Described herein is a summary of the selective reactions that have been developed for known systems, as well as a summary of computationally-based predictions of selectivities that might be anticipated in reactions of yet unrealized substructures.
Construction of -Boc-2-Alkylaminoquinazolin-4(3)-Ones via a Three-Component, One-Pot Protocol Mediated by Copper(II) Chloride that Spares Enantiomeric Purity
Chiral 2-alkylquinazolinones are key synthetic intermediates, but their preparation in high optical purity is challenging. Thus, a multicomponent procedure integrating anthranilic acids, -Boc-amino acids, and amines in the presence of methanesulfonyl chloride, -methylimidazole, and copper(II) chloride was developed to mildly afford -Boc-2-alkylaminoquinazolin-4(3)-ones with excellent preservation of enantiomeric purity (>99% ee). Copper(II) chloride was essential to retaining enantiopurity, and reaction component structural changes were well tolerated, resulting in an efficient, all-in-one procedure that promotes sequential coupling, lactonization, aminolysis, and cyclization in good yields. The method was applied to the rapid assembly of four key intermediates used in the synthesis of high profile quinazolinones, including several PI3K inhibitor drugs.
Enantioselective Bifunctional Ammonium Salt-Catalyzed Syntheses of 3-CFS-, 3-RS-, and 3-F-Substituted Isoindolinones
We herein report the ammonium salt-catalyzed synthesis of chiral 3,3-disubstituted isoindolinones bearing a heteroatom functionality in the 3-position. A broad variety of differently substituted CFS- and RS-derivatives were obtained with often high enantioselectivities when using Maruoka's bifunctional chiral ammonium salt catalyst. In addition, a first proof-of-concept for the racemic synthesis of the analogous F-containing products was obtained as well, giving access to one of the rare examples of a fairly stable α-F-α-amino acid derivative.
Practical Synthesis of -Trifluoromethylated Pyridines Based on Regioselective Cobalt-Catalyzed [2+2+2] Cycloaddition using Trifluoromethylated Diynes with Nitriles
Regioselective cobalt-catalyzed [2+2+2] cycloaddition using fluorine-containing diynes with nitriles was described. Cycloaddition of fluorinated diynes with nitriles under the influence of CoCl(phen), zinc bromide, and zinc dust in dichloroethane at 80°C for 3 h took place smoothly, exclusively affording the corresponding -fluoroalkylated pyridines in excellent yields. In addition, dinitriles as substrate were also found to be suitable for this reaction, giving the corresponding fluoroalkylated bipyridine derivatives in excellent yields.