CGUFS: A clustering-guided unsupervised feature selection algorithm for gene expression data
Gene expression data is typically high dimensional with a limited number of samples and contain many features that are unrelated to the disease of interest. Existing unsupervised feature selection algorithms primarily focus on the significance of features in maintaining the data structure while not taking into account the redundancy among features. Determining the appropriate number of significant features is another challenge.
Deep learning framework for rapid and accurate respiratory COVID-19 prediction using chest X-ray images
COVID-19 is a contagious disease that affects the human respiratory system. Infected individuals may develop serious illnesses, and complications may result in death. Using medical images to detect COVID-19 from essentially identical thoracic anomalies is challenging because it is time-consuming, laborious, and prone to human error. This study proposes an end-to-end deep-learning framework based on deep feature concatenation and a Multi-head Self-attention network. Feature concatenation involves fine-tuning the pre-trained backbone models of DenseNet, VGG-16, and InceptionV3, which are trained on a large-scale ImageNet, whereas a Multi-head Self-attention network is adopted for performance gain. End-to-end training and evaluation procedures are conducted using the COVID-19_Radiography_Dataset for binary and multi-classification scenarios. The proposed model achieved overall accuracies (96.33% and 98.67%) and F1_scores (92.68% and 98.67%) for multi and binary classification scenarios, respectively. In addition, this study highlights the difference in accuracy (98.0% vs. 96.33%) and F_1 score (97.34% vs. 95.10%) when compared with feature concatenation against the highest individual model performance. Furthermore, a virtual representation of the saliency maps of the employed attention mechanism focusing on the abnormal regions is presented using explainable artificial intelligence (XAI) technology. The proposed framework provided better COVID-19 prediction results outperforming other recent deep learning models using the same dataset.
CsAGP: Detecting Alzheimer's disease from multimodal images via dual-transformer with cross-attention and graph pooling
Alzheimer's disease (AD) is a terrible and degenerative disease commonly occurring in the elderly. Early detection can prevent patients from further damage, which is crucial in treating AD. Over the past few decades, it has been demonstrated that neuroimaging can be a critical diagnostic tool for AD, and the feature fusion of different neuroimaging modalities can enhance diagnostic performance. Most previous studies in multimodal feature fusion have only concatenated the high-level features extracted by neural networks from various neuroimaging images simply. However, a major problem of these studies is over-looking the low-level feature interactions between modalities in the feature extraction stage, resulting in suboptimal performance in AD diagnosis. In this paper, we develop a dual-branch vision transformer with cross-attention and graph pooling, namely CsAGP, which enables multi-level feature interactions between the inputs to learn a shared feature representation. Specifically, we first construct a brand-new cross-attention fusion module (CAFM), which processes MRI and PET images by two independent branches of differing computational complexity. These features are fused merely by the cross-attention mechanism to enhance each other. After that, a concise graph pooling algorithm-based Reshape-Pooling-Reshape (RPR) framework is developed for token selection to reduce token redundancy in the proposed model. Extensive experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database demonstrated that the suggested method obtains 99.04%, 97.43%, 98.57%, and 98.72% accuracy for the classification of AD vs. CN, AD vs. MCI, CN vs. MCI, and AD vs. CN vs. MCI, respectively.
A Novel Secure Authentication Protocol for e-Health Records in Cloud with a New Key Generation Method and Minimized Key Exchange
In wake of covid19, many countries are shifting their paper-based health record management from manual processes to digital ones. The major benefit of digital health record is that data can be easily shared. As health data is sensitive, more security is to be provided to gain the trust of stakeholders. In this paper, a novel secure authentication protocol is planned for digitalizing personal health record that will be used by the user. While transacting data, a key is used to secure it. Many protocols used elliptic curve cryptography. In this proposed protocol, at an initial stage, an asymmetric and quantum-resistant crypto-algorithm, Kyber is used. In further stages, symmetric crypto-algorithm, Advanced Encryption Standard in Galois/Counter mode (AES-GCM) is used to secure transferred data. For every session, a new key is generated for secure transactions. The more interesting fact in this protocol is that transactions are secured without exchanging actual key and also minimized the key exchange. This protocol not only verified the authenticity of user but also checked rightful citizenship of user. This protocol is analyzed for various security traits using ProVerif tool and provided better results relating to security provisioning, cost of storage, and computation as opposed to related protocols.
A close contact identification algorithm using kernel density estimation for the ship passenger health
COVID-19 has been spread globally, with ships posing a significant challenge for virus containment due to their close-quartered environments. The most effective method for preventing the spread of the virus currently involves tracking and physically isolating close contacts. In this paper, we propose the Close Contact Identification Algorithm (CCIA). The probability density of user location points may be higher in a certain spatial range such as a cabin where there are more location points. The characteristics of CCIA include using Kernel Density Estimation (KDE) to calculate the probability density of each user location point and seeking the maximum Euclidean distance between location points in each cluster for merging clusters. CCIA is capable of calculating the probability density of each location point, a feature that other clustering algorithms, such as Kmeans, Hierarchical, and DBSCAN, cannot achieve. The contribution of CCIA is using the probability density of each location point to identify close contacts in ship environments. The performance of CCIA shows more accurate clustering compared to Kmeans, Hierarchical, and DBSCAN. CCIA can effectively identify close contacts and enhance the capabilities of user devices in mitigating the spread of COVID-19 within ship environments.
COVID-19 contact tracking based on person reidentification and geospatial data
Efficient contact tracing is a crucial step in preventing the spread of COVID-19. However, the current methods rely heavily on manual investigation and truthful reporting by high-risk individuals. Mobile applications and Bluetooth-based contact tracing methods have also been adopted, but privacy concerns and reliance on personal data have limited their effectiveness. To address these challenges, in this paper, a geospatial big data method that combines person reidentification and geospatial information for contact tracing is proposed. The proposed real-time person reidentification model can identify individuals across multiple surveillance cameras, and the surveillance data is fused with geographic information and mapped onto a 3D geospatial model to track movement trajectories. After real-world verification, the proposed method achieves a first accuracy rate of 91.56%, a first-five accuracy rate of 97.70%, and a mean average precision of 78.03% with an inference speed of 13 ms per image. Importantly, the proposed method does not rely on personal information, mobile phones, or wearable devices, avoiding the limitations of existing contact tracing schemes and providing significant implications for public health in the post-COVID-19 era.
DSGA-Net: Deeply separable gated transformer and attention strategy for medical image segmentation network
To address the problems of under-segmentation and over-segmentation of small organs in medical image segmentation. We present a novel medical image segmentation network model with Depth Separable Gating Transformer and a Three-branch Attention module (DSGA-Net). Firstly, the model adds a Depth Separable Gated Visual Transformer (DSG-ViT) module into its Encoder to enhance (i) the contextual links among global, local, and channels and (ii) the sensitivity to location information. Secondly, a Mixed Three-branch Attention (MTA) module is proposed to increase the number of features in the up-sampling process. Meanwhile, the loss of feature information is reduced when restoring the feature image to the original image size. By validating Synapse, BraTs2020, and ACDC public datasets, the Dice Similarity Coefficient (DSC) of the results of DSGA-Net reached 81.24%,85.82%, and 91.34%, respectively. Moreover, the Hausdorff Score (HD) decreased to 20.91% and 5.27% on the Synapse and BraTs2020. There are 10.78% and 0.69% decreases compared to the Baseline TransUNet. The experimental results indicate that DSGA-Net achieves better segmentation than most advanced methods.
A self-learning mean optimization filter to improve bluetooth 5.1 AoA indoor positioning accuracy for ship environments
As COVID-19 is still spreading globally, the narrow ship space makes COVID-19 easier for the virus to infect ship passengers. Tracking close contacts remains an effective way to reduce the risk of virus transmission. Therefore, indoor positioning technology should be developed for ship environments. Today, almost all smart devices are equipped with Bluetooth. The Angle of Arrival (AoA) using Bluetooth 5.1 indoor positioning technology is well suited for ship environments. But the narrow ship space and steel walls make the multipath effect more pronounced in ship environments. This also means that more noises are included in the signal. In the Uniform Rectangular Array (URA) type receiving antenna array, elevation and azimuth angles are two important parameters for the AoA indoor positioning technology. Elevation and azimuth angles are unstable because of the influence of noise. In this paper, a Self-Learning Mean Optimization Filter (SLMOF) is proposed. The goal of SLMOF is to find the optimal elevation and azimuth angles as a way to improve the Bluetooth 5.1 AoA indoor positioning accuracy. The experimental results show that the Root Mean Square Error (RMSE) of SLMOF is 0.44 m, which improves the accuracy by 72% compared to Kalman Filter (KF). This method can be applied to find the optimal average in every dataset.
GAM-SpCaNet: Gradient awareness minimization-based spinal convolution attention network for brain tumor classification
Brain tumor is one of the common diseases of the central nervous system, with high morbidity and mortality. Due to the wide range of brain tumor types and pathological types, the same type is divided into different subgrades. The imaging manifestations are complex, making clinical diagnosis and treatment difficult. In this paper, we construct SpCaNet (Spinal Convolution Attention Network) to effectively utilize the pathological features of brain tumors, consisting of a Positional Attention (PA) convolution block, Relative self-attention transformer block, and Intermittent fully connected (IFC) layer. Our method is more lightweight and efficient in recognition of brain tumors. Compared with the SOTA model, the number of parameters is reduced by more than three times. In addition, we propose the gradient awareness minimization (GAM) algorithm to solve the problem of insufficient generalization ability of the traditional Stochastic Gradient Descent (SGD) method and use it to train the SpCaNet model. Compared with SGD, GAM achieves better classification performance. According to the experimental results, our method has achieved the highest accuracy of 99.28%, and the proposed method performs well in classifying brain tumors.
Multiple-level thresholding for breast mass detection
Detection of breast mass plays a very important role in making the diagnosis of breast cancer. For faster detection of breast cancer caused by breast mass, we developed a novel and efficient patch-based breast mass detection system for mammography images. The proposed framework is comprised of three modules, including pre-processing, multiple-level breast tissue segmentation, and final breast mass detection. An improved Deeplabv3+ model for pectoral muscle removal is deployed in pre-processing. We then proposed a multiple-level thresholding segmentation method to segment breast mass and obtained the connected components (ConCs), where the corresponding image patch to each ConC is extracted for mass detection. In the final detection stage, each image patch is classified into breast mass and breast tissue background by trained deep learning models. The patches that are classified as breast mass are then taken as the candidates for breast mass. To reduce the false positive rate in the detection results, we applied the non-maximum suppression algorithm to combine the overlapped detection results. Once an image patch is considered a breast mass, the accurate detection result can then be retrieved from the corresponding ConC in the segmented images. Moreover, a coarse segmentation result can be simultaneously retrieved after detection. Compared to the state-of-the-art methods, the proposed method achieved comparable performance. On CBIS-DDSM, the proposed method achieved a detection sensitivity of 0.87 at 2.86 FPI (False Positive rate per Image), while the sensitivity reached 0.96 on INbreast with an FPI of only 1.29.
DeSa COVID-19: Deep salient COVID-19 image-based quality assessment
This study offers an advanced method to evaluate the coronavirus disease 2019 (COVID-19) image quality. The salient COVID-19 image map is incorporated with the deep convolutional neural network (DCNN), namely DeSa COVID-19, which exerts the n-convex method for the full-reference image quality assessment (FR-IQA). The glaring outcomes substantiate that DeSa COVID-19 and the recommended DCNN architecture can convey a remarkable accomplishment on the COVID-chestxray and the COVID-CT datasets, respectively. The salient COVID-19 image map is also gauged in the minuscule COVID-19 image patches. The exploratory results attest that DeSa COVID-19 and the recommended DCNN methods are very good accomplishment compared with other advanced methods on COVID-chestxray and COVID-CT datasets, respectively. The recommended DCNN also acquires the enhanced outgrowths faced with several advanced full-reference-medical-image-quality-assessment (FR-MIQA) techniques in the fast fading (FF), blocking artifact (BA), white noise Gaussian (WG), JPEG, and JPEG2000 (JP2K) in the distorted and undistorted COVID-19 images. The Spearman's rank order correlation coefficient (SROCC) and the linear correlation coefficient (LCC) appraise the recommended DCNN and DeSa COVID-19 fulfillment which are compared the recent FR-MIQA methods. The DeSa COVID-19 evaluation outshines and higher compared the recommended DCNN, and and esteem all of advanced FR-MIQAs methods on SROCC and LCC measures, respectively. The shift add operations of trigonometric, logarithmic, and exponential functions are mowed down in the computational complexity of the DeSa COVID-19 and the recommended DCNN. The DeSa COVID-19 more superior the recommended DCNN and also the other recent full-reference medical image quality assessment methods.
A novel DeepMaskNet model for face mask detection and masked facial recognition
Coronavirus disease (COVID-19) has significantly affected the daily life activities of people globally. To prevent the spread of COVID-19, the World Health Organization has recommended the people to wear face mask in public places. Manual inspection of people for wearing face masks in public places is a challenging task. Moreover, the use of face masks makes the traditional face recognition techniques ineffective, which are typically designed for unveiled faces. Thus, introduces an urgent need to develop a robust system capable of detecting the people not wearing the face masks and recognizing different persons while wearing the face mask. In this paper, we propose a novel DeepMasknet framework capable of both the face mask detection and masked facial recognition. Moreover, presently there is an absence of a unified and diverse dataset that can be used to evaluate both the face mask detection and masked facial recognition. For this purpose, we also developed a largescale and diverse unified mask detection and masked facial recognition (MDMFR) dataset to measure the performance of both the face mask detection and masked facial recognition methods. Experimental results on multiple datasets including the cross-dataset setting show the superiority of our DeepMasknet framework over the contemporary models.
A deeper look into cybersecurity issues in the wake of Covid-19: A survey
This study analyzed the Coronavirus (COVID-19) crisis from the angle of cyber-crime, highlighting the wide spectrum of cyberattacks that occurred around the world. The modus operandi of cyberattack campaigns was revealed by analyzing and considering cyberattacks in the context of major world events. Following what appeared to be substantial gaps between the initial breakout of the virus and the first COVID-19-related cyber-attack, the investigation indicates how attacks became significantly more frequent over time, to the point where three or four different cyber-attacks were reported on certain days. This study contributes in the direction of fifteen types of cyber-attacks which were identified as the most common pattern and its ensuing devastating events during the global COVID-19 crisis. The paper is unique because it covered the main types of cyber-attacks that most organizations are currently facing and how to address them. An intense look into the recent advances that cybercriminals leverage, the dynamism, calculated measures to tackle it, and never-explored perspectives are some of the integral parts which make this review different from other present reviewed papers on the COVID-19 pandemic. A qualitative methodology was used to provide a robust response to the objective used for the study. Using a multi-criteria decision-making problem-solving technique, many facets of cybersecurity that have been affected during the pandemic were then quantitatively ranked in ascending order of severity. The data was generated between March 2020 and December 2021, from a global survey through online contact and responses, especially from different organizations and business executives. The result show differences in cyber-attack techniques; as hacking attacks was the most frequent with a record of 330 out of 895 attacks, accounting for 37%. Next was Spam emails attack with 13%; emails with 13%; followed by malicious domains with 9%. Mobile apps followed with 8%, Phishing was 7%, Malware 7%, Browsing apps with 6%, DDoS has 6%, Website apps with 6%, and MSMM with 6%. BEC frequency was 4%, Ransomware with 2%, Botnet scored 2% and APT recorded 1%. The study recommends that it will continue to be necessary for governments and organizations to be resilient and innovative in cybersecurity decisions to overcome the current and future effects of the pandemic or similar crisis, which could be long-lasting. Hence, this study's findings will guide the creation, development, and implementation of more secure systems to safeguard people from cyber-attacks.
Effects of official information and rumor on resource-epidemic coevolution dynamics
Epidemic-related information and resources have proven to have a significant impact on the spread of the epidemic during the Corona Virus Disease 2019 (COVID-19) pandemic. The various orientation role of information has different effects on the epidemic spreading process, which will affect the individual' awareness of resources allocation and epidemic spreading scale. Based on this, a three-layer network is established to describe the dynamic coevolution process among information dissemination, resource allocation, and epidemic spreading. In order to analyze dynamic coevolution process, the microscopic Markov chain (MMC) theory is used. Then, the threshold of epidemic spreading is deduced. Our results indicated that the official information orientation intensity inhibits the epidemics spreading, while rumor orientation intensity promotes epidemic spreading. At the same time, the efficiency of resource utilization restrains the expansion of the infection scale. The two kinds of information are combined with resources respectively. Official information will enhance the inhibitory effect of resources epidemics spreading, while rumor will do the opposite.
Pruning-based oversampling technique with smoothed bootstrap resampling for imbalanced clinical dataset of Covid-19
The Coronavirus Disease (COVID-19) was declared a pandemic disease by the World Health Organization (WHO), and it has not ended so far. Since the infection rate of the COVID-19 increases, the computational approach is needed to predict patients infected with COVID-19 in order to speed up the diagnosis time and minimize human error compared to conventional diagnoses. However, the number of negative data that is higher than positive data can result in a data imbalance situation that affects the classification performance, resulting in a bias in the model evaluation results. This study proposes a new oversampling technique, i.e., TRIM-SBR, to generate the minor class data for diagnosing patients infected with COVID-19. It is still challenging to develop the oversampling technique due to the data's generalization issue. The proposed method is based on pruning by looking for specific minority areas while retaining data generalization, resulting in minority data seeds that serve as benchmarks in creating new synthesized data using bootstrap resampling techniques. Accuracy, Specificity, Sensitivity, F-measure, and AUC are used to evaluate classifier performance in data imbalance cases. The results show that the TRIM-SBR method provides the best performance compared to other oversampling techniques.
iVaccine-Deep: Prediction of COVID-19 mRNA vaccine degradation using deep learning
Messenger RNA (mRNA) has emerged as a critical global technology that requires global joint efforts from different entities to develop a COVID-19 vaccine. However, the chemical properties of RNA pose a challenge in utilizing mRNA as a vaccine candidate. For instance, the molecules are prone to degradation, which has a negative impact on the distribution of mRNA among patients. In addition, little is known of the degradation properties of individual RNA bases in a molecule. Therefore, this study aims to investigate whether a hybrid deep learning can predict RNA degradation from RNA sequences. Two deep hybrid neural network models were proposed, namely GCN_GRU and GCN_CNN. The first model is based on graph convolutional neural networks (GCNs) and gated recurrent unit (GRU). The second model is based on GCN and convolutional neural networks (CNNs). Both models were computed over the structural graph of the mRNA molecule. The experimental results showed that GCN_GRU hybrid model outperform GCN_CNN model by a large margin during the test time. Validation of proposed hybrid models is performed by well-known evaluation measures. Among different deep neural networks, GCN_GRU based model achieved best scores on both public and private MCRMSE test scores with 0.22614 and 0.34152, respectively. Finally, GCN_GRU pre-trained model has achieved the highest AuC score of 0.938. Such proven outperformance of GCNs indicates that modeling RNA molecules using graphs is critical in understanding molecule degradation mechanisms, which helps in minimizing the aforementioned issues. To show the importance of the proposed GCN_GRU hybrid model, in silico experiments has been contacted. The in-silico results showed that our model pays local attention when predicting a given position's reactivity and exhibits interesting behavior on neighboring bases in the sequence.
Analysis of COVID-19 severity from the perspective of coagulation index using evolutionary machine learning with enhanced brain storm optimization
Coronavirus 2019 (COVID-19) is an extreme acute respiratory syndrome. Early diagnosis and accurate assessment of COVID-19 are not available, resulting in ineffective therapeutic therapy. This study designs an effective intelligence framework to early recognition and discrimination of COVID-19 severity from the perspective of coagulation indexes. The framework is proposed by integrating an enhanced new stochastic optimizer, a brain storm optimizing algorithm (EBSO), with an evolutionary machine learning algorithm called EBSO-SVM. Fast convergence and low risk of the local stagnant can be guaranteed for EBSO with added by Harris hawks optimization (HHO), and its property is verified on 23 benchmarks. Then, the EBSO is utilized to perform parameter optimization and feature selection simultaneously for support vector machine (SVM), and the presented EBSO-SVM early recognition and discrimination of COVID-19 severity in terms of coagulation indexes using COVID-19 clinical data. The classification performance of the EBSO-SVM is very promising, reaching 91.9195% accuracy, 90.529% Matthews correlation coefficient, 90.9912% Sensitivity and 88.5705% Specificity on COVID-19. Compared with other existing state-of-the-art methods, the EBSO-SVM in this paper still shows obvious advantages in multiple metrics. The statistical results demonstrate that the proposed EBSO-SVM shows predictive properties for all metrics and higher stability, which can be treated as a computer-aided technique for analysis of COVID-19 severity from the perspective of coagulation.
Lexical sorting centrality to distinguish spreading abilities of nodes in complex networks under the Susceptible-Infectious-Recovered (SIR) model
Epidemic modeling in complex networks is a hot research topic in recent years. The spreading of a virus (such as SARS-CoV-2) in a community, spreading computer viruses in communication networks, or spreading gossip on a social network is the subject of epidemic modeling. The Susceptible-Infectious-Recovered (SIR) is one of the most popular epidemic models. One crucial issue in epidemic modeling is the determination of the spreading ability of the nodes. Thus, for example, super spreaders can be detected in the early stages. However, the SIR is a stochastic model, and it needs heavy Monte-Carlo simulations. Hence, the researchers focused on combining several centrality measures to distinguish the spreading capabilities of nodes. In this study, we proposed a new method called Lexical Sorting Centrality (LSC), which combines multiple centrality measures. The LSC uses a sorting mechanism similar to lexical sorting to combine various centrality measures for ranking nodes. We conducted experiments on six datasets using SIR to evaluate the performance of LSC and compared LSC with degree centrality (DC), eigenvector centrality (EC), closeness centrality (CC), betweenness centrality (BC), and Gravitational Centrality (GC). Experimental results show that LSC distinguishes the spreading ability of nodes more accurately, more decisively, and faster.
Attention mechanism and mixup data augmentation for classification of COVID-19 Computed Tomography images
The Coronavirus disease is quickly spreading all over the world and the emergency situation is still out of control. Latest achievements of deep learning algorithms suggest the use of deep Convolutional Neural Network to implement a computer-aided diagnostic system for automatic classification of COVID-19 CT images. In this paper, we propose to employ a feature-wise attention layer in order to enhance the discriminative features obtained by convolutional networks. Moreover, the original performance of the network has been improved using the mixup data augmentation technique. This work compares the proposed attention-based model against the stacked attention networks, and traditional versus mixup data augmentation approaches. We deduced that feature-wise attention extension, while outperforming the stacked attention variants, achieves remarkable improvements over the baseline convolutional neural networks. That is, ResNet50 architecture extended with a feature-wise attention layer obtained 95.57% accuracy score, which, to best of our knowledge, fixes the state-of-the-art in the challenging COVID-CT dataset.
A modified coronavirus herd immunity optimizer for capacitated vehicle routing problem
Capacitated Vehicle routing problem is NP-hard scheduling problem in which the main concern is to find the best routes with minimum cost for a number of vehicles serving a number of scattered customers under some vehicle capacity constraint. Due to the complex nature of the capacitated vehicle routing problem, metaheuristic optimization algorithms are widely used for tackling this type of challenge. Coronavirus Herd Immunity Optimizer (CHIO) is a recent metaheuristic population-based algorithm that mimics the COVID-19 herd immunity treatment strategy. In this paper, CHIO is modified for capacitated vehicle routing problem. The modifications for CHIO are accomplished by modifying its operators to preserve the solution feasibility for this type of vehicle routing problems. To evaluate the modified CHIO, two sets of data sets are used: the first data set has ten Synthetic CVRP models while the second is an ABEFMP data set which has 27 instances with different models. Moreover, the results achieved by modified CHIO are compared against the results of other 13 well-regarded algorithms. For the first data set, the modified CHIO is able to gain the same results as the other comparative methods in two out of ten instances and acceptable results in the rest. For the second and the more complicated data sets, the modified CHIO is able to achieve very competitive results and ranked the first for 8 instances out of 27. In a nutshell, the modified CHIO is able to efficiently solve the capacitated vehicle routing problem and can be utilized for other routing problems in the future such as multiple travelling salesman problem.
Artificial Intelligence and COVID-19: A Systematic umbrella review and roads ahead
Artificial Intelligence (AI) has played a substantial role in the response to the challenges posed by the current pandemic. The growing interest in using AI to handle Covid-19 issues has accelerated the pace of AI research and resulted in an exponential increase in articles and review studies within a very short period of time. Hence, it is becoming challenging to explore the large corpus of academic publications dedicated to the global health crisis. Even with the presence of systematic review studies, given their number and diversity, identifying trends and research avenues beyond the pandemic should be an arduous task. We conclude therefore that after the one-year mark of the declaration of Covid-19 as a pandemic, the accumulated scientific contribution lacks two fundamental aspects: Knowledge synthesis and Future projections. In contribution to fill this void, this paper is a (i) synthesis study and (ii) foresight exercise. The synthesis study aims to provide the scholars a consolidation of findings and a knowledge synthesis through a systematic review of the reviews (umbrella review) studying AI applications against Covid-19. Following the PRISMA guidelines, we systematically searched PubMed, Scopus, and other preprint sources from 1st December 2019 to 1st June 2021 for eligible reviews. The literature search and screening process resulted in 45 included reviews. Our findings reveal patterns, relationships, and trends in the AI research community response to the pandemic. We found that in the space of few months, the research objectives of the literature have developed rapidly from identifying potential AI applications to evaluating current uses of intelligent systems. Only few reviews have adopted the -analysis as a study design. Moreover, a clear dominance of the medical theme and the DNN methods has been observed in the reported AI applications. Based on its constructive systematic umbrella review, this work conducts a foresight exercise that tries to envision the post-Covid-19 research landscape of the AI field. We see seven key themes of research that may be an outcome of the present crisis and which advocate a more sustainable and responsible form of intelligent systems. We set accordingly a post-pandemic research agenda articulated around these seven drivers. The results of this study can be useful for the AI research community to obtain a holistic view of the current literature and to help prioritize research needs as we are heading toward the new normal.