Acute effects of heavy resistance exercise on biomarkers of neuroendocrine-immune regulation in healthy adults: a systematic review
The nervous system integrates the immune system in the systemic effort to maintain or restore the organism's homeostasis. Acute bouts of exercise may alter the activity of specific pathways associated with neuroendocrine regulation of the immune system.
Traumatic Brain Injury Rehabilitation: An Exercise Immunology Perspective
Traumatic brain injury (TBI) is the largest cause of death and disability globally. The physical and psychosocial consequences after TBI can persist for prolonged periods, and lead to increased health care and economic burden. Exercise has shown promise over recent years as a mode of rehabilitation that alleviates multiple TBI symptoms; but there is a lack of controlled large-scale studies and limited research into the underlying mechanisms. This critical review draws from animal and human studies on exercise immunology to speculate on possible mechanisms that could underlie beneficial outcomes of exercise after TBI. The anti-inflammatory role of exercise, protective role offered by pre-injury exercise, and the need for more objective studies on biomarker analysis are expected to be useful considerations to develop optimal post-TBI exercise rehabilitation programs. Future studies can consider investigating the specific immunological processes induced by exercise in consideration of individual differences and non-aerobic exercise modalities.
Exercise, inflammation and acute cardiovascular events
Individuals who participate in regular exercise over time have a markedly reduced risk of cardiovascular disease. Paradoxically, in susceptible individuals with underlying, often undiagnosed, disease states, exercise may acutely increase an individual's risk of cardiovascular events during and immediately following physical exertion. Exercise is thought to evoke conditions that trigger atheromatous plaque rupture or trigger life threatening arrhythmias in individuals with pre-existing, vulnerable coronary artery and inherited cardiovascular disease respectively. This transient increased risk may be driven by the inflammatory trigger provided by physical exertion where exercise is associated with an upregulation of inflammatory mediators in the acute phase. Conversely, habitual exercise can lead to a modulation of the inflammatory response over time. This review explores: exercise related inflammation; acute cardiovascular events related to exercise and strategies to mitigate these risks.
The effects of exercise on complement system proteins in humans: a systematic scoping review
The complement system is comprised of the classical, lectin and alternative pathways that result in the formation of: pro-inflammatory anaphylatoxins; opsonins that label cells for phagocytic removal; and, a membrane attack complex that directly lyses target cells. Complement-dependent cytotoxicity (CDC) - cell lysis triggered by complement protein C1q binding to the Fc region of antibodies bound to target cells - is another effector function of complement and a key mechanism-of-action of several monoclonal antibody therapies. At present, it is not well established how exercise affects complement system proteins in humans.
A systematic literature review on the effects of exercise on human Toll-like receptor expression
Toll-like receptors (TLRs) are a family of transmembrane pattern recognition receptors that are mainly expressed on immune cells. Recognition of various exogenous and endogenous molecular patterns activates the TLR signalling cascade, which orchestrates an inflammatory immune response. Dysfunctional immune responses, including aberrant TLR signalling, are increasingly implicated in the associations between sedentarism, chronic low-grade systemic inflammation and various non-communicable diseases. Conversely, exercise exerts anti-inflammatory effects, which could be conferred through its immunomodulatory properties, potentially affecting TLRs. This study aims to systematically review the effects of exercise on human TLR expression.
Higher risk of upper respiratory tract infection post marathon running: when physical exercise becomes a threat to the immune system
Several studies have reported that marathon runners have a higher risk of upper respiratory tract infections (URTI) post marathon than non-exercising controls. However, other studies did not find a higher risk of URTI in the same participants before and after a marathon, precluding a conclusive consensus. Besides the between-subjects effects, another important confounding factor in these results is the different pre and post follow-up time to track URTI.
Combined exercise intervention in a mouse model of high-risk neuroblastoma: effects on physical, immune, tumor and clinical outcomes
Exercise might exert anti-tumoral effects in adult cancers but this question remains open in pediatric tumors, which frequently show a different biology compared to adult malignancies. We studied the effects of an exercise intervention on physical function, immune variables and tumoral response in a preclinical model of a highly aggressive pediatric cancer, high-risk neuroblastoma (HR-NB).
Higher levels of physical activity are associated with reduced tethering and migration of pro-inflammatory monocytes in males with central obesity
Despite evidence that monocyte migration is accentuated by central adiposity, the impact of physical activity (PA) and exercise, particularly in the post-prandial state, on limiting migration are not established. We hypothesised that PA and a single bout of walking exercise would be associated with reduced ex vivo monocyte tethering and migration in middleaged males with central obesity (CO). Objective levels of PA were measured for 7 days in lean males (LE, N=12, mean (SD) age 39 (10) years, waist circumference 81.0 (6.3) cm) and males with CO (N=12, mean (SD) age 40 (9) years, waist circumference 115.3 (13.9) cm), followed by donation of a fasted blood sample. On the same day, CO undertook a bout of walking exercise, before donation of a second fasted blood sample. An ex vivo assay, coupled to flow cytometry, determined tethering and migration of classical, intermediate, and non-classical monocytes. C-C and CXC chemokine receptor (CCR2, CCR5 and CX3CR1) expression were also determined on total and classical monocytes. Monocyte subsets (total, classical, intermediate and CCR2+ monocytes), metabolic (glucose and lipids) and inflammatory (C-reactive protein) markers were greater in CO vs. LE (lower highdensity lipoprotein); however, adjustments for PA mitigated group differences for glucose, lipids, and monocyte subsets. Ex vivo tethering and migration (absolute and relative) of most monocyte subsets was greater in CO vs LE. Relative monocyte tethering and migration was largely not influenced by PA; however, higher PA was associated with reduced absolute migration and tethering of CD16 expressing monocytes in CO. Prior walking had no impact on these variables. These results highlight that regular PA, not single exercise bouts may limit the migration of pro-inflammatory monocytes in CO. These changes may relate to physiological parameters in blood (i.e. number of cells and their adhesion), rather than differences in chemokine receptor expression.
Respiratory viral infections - impact on sport and exercise medicine
Respiratory viruses are the most frequent causative agents of disease in humans and thus also in elite athletes. The COVID-19 pandemic has recently emphasized the entire spectrum of respiratory tract infections worldwide. Understanding the basic elements of respiratory viral infections is a fundamental requirement from the perspective of etiological diagnostics, treatment, and prevention strategy planning, as well as resource allocation.
The anti-inflammatory and bioregulatory effects of habitual exercise in high-fat diet-induced obesity involve crown-like structures and MCP-1 in white adipose tissue
Macrophage accumulation in the adipose tissue and changes in their inflammatory phenotype is a hallmark of obesity-induced inflammation, notably forming inflammatory structures known as "crown-like structures (CLS)". Exercise can be a key strategy to improve inflammation-related complications, but it is crucial to consider that, although exercise generally exerts systemic and local anti-inflammatory effects, this depends on the basal inflammatory status and exercise modality. In this context, the "bioregulatory effect of exercise" implies to achieve the reduction or prevention of an excessive inflammatory response and also the preservation or stimulation of the innate response. In the present work, our aim was to evaluate the effect of regular exercise on adipose tissue inflammation in high-fat diet-induced obesity in mice, as reflected by macrophage infiltration and phenotype, and CLS formation, together with a potential role for the chemokine MCP-1 in this process. Results showed that obesity is associated with greater MCP-1 expression (p<0.05), macrophage accumulation (p<0.05), and CLS presence (p<0.001). Regular exercise reduced macrophage accumulation (p<0.05), MCP-1 expression (p<0.01), and CLS presence (p<0.05) in obese mice; while it increased macrophage and CLS presence (p<0.01), MCP-1 expression (p<0.05), and M2 polarization (p<0.05) in lean mice. MCP-1 was associated with the proliferation of CLS, showing the first image demonstrating a potential role of this chemokine in the development of these structures. Altogether, these results confirm, for the first time, the "bioregulatory effect of exercise" in the adipose tissue: reducing inflammation in individuals with an elevated inflammatory setpoint, but stimulating this response of the immune system in healthy individuals.
Unleashing anti-tumour immunity: dietary restriction and exercise interventions adjunct to chemotherapy for cancer patients
Conventional chemotherapies can stimulate the immune system by increasing tumour antigenicity (e.g., neoantigen exposure to immune cells) and altering adjuvanticity in the tumour (e.g., danger associated molecular patterns and cytokines). These molecules promote the recruitment, activation, and maturation of dendritic cells, which in turn, prime and activate cytotoxic T cells against tumour cells. However, several factors can decrease the immunostimulatory efficacy of chemotherapeutic agents. These include reduced tumour cell antigenicity and adjuvanticity and compromised immune function at a local and systemic level. Findings from preclinical studies show that dietary restriction and exercise promote systemic changes that may help to restore immune system function through several mechanisms, including an enhanced infiltration and function of antitumoral immune cells and a decrease in immunosuppressive cells, leading to a reduction in tumour volume. In addition, dietary restriction and exercise training in mice have been shown to enhance the efficacy of chemotherapy. In human studies there is also emerging evidence that dietary restriction and exercise can impact the immune system towards a more antitumoral profile. In this review, we discuss the immunostimulatory effects of dietary restriction (caloric restriction and fasting) and exercise training in preclinical cancer models, and potential synergies with chemotherapy. We then review clinical studies assessing the effects of these interventions on immune-related endpoints and tumour responses. Finally, we propose that combining dietary restriction with exercise could be a promising strategy to increase chemotherapy efficacy.
Investigating the impact of exercise on T and NK cells in skin cancer: a systematic review
Skin cancer has the highest incidence of all cancers, and their incidence are increasing in both melanoma and non-melanoma skin cancers. Alternative adjuvant treatment strategies appropriate for their management are needed. Modifiable lifestyle factors influence disease outcomes, either improving or worsening outcomes. Exercise is an example of a modifiable lifestyle factor, and can be prescribed as an adjuvant therapy in other cancer types to improve immune function and overall clinical outcomes. The initial aim of the review was to investigate the T-cell specific mechanisms of exercise which affect clinical/disease outcomes in skin cancer. Study quality was assessed by a modified Covidence quality assessment template with animal-model study specific criteria. A total of 10 articles were included; all articles were murine model studies investigating melanoma. Eight studies (n=8) employed a randomised controlled trial design, with two bio-informatics studies, and one study using human data which could solidify a link to human health. While the review focussed initially on T-cells, many studies reported significant changes in NK cells, and as they share the same haematopoietic lineage/ common lymphoid progenitor as T cells, the data was included in the analyses. Most studies indicated that exercise reduced melanoma tumour burden. Exercising prior to melanoma inoculation was most effective for delaying carcinogenesis and reducing tumour burden. Synergism was a topic identified in studies; PD-1/PD-L1 treatment, and exercise were not synergistic. Conversely, exercise and mental stimulation were synergistic, and the temperature at which exercise was conducted significantly reduced tumour burden. Several murine studies reported that exercise improved clinical outcomes in melanoma, and that long-term exercise was more effective in reducing tumour burden. Further studies are required to investigate this relationship in humans, and in other types of skin cancer.
Involvement of neutrophils and macrophages in exhaustive exercise-induced liver, kidney, heart, and lung injuries
Moderate exercise is effective for maintaining or improving overall health. However, excessive exercise that exhausts the adaptive reserve of the body or its ability to positively respond to training stimuli can induce tissue damage and dysfunction of multiple organs and systems. Tissue injury, inflammation, and oxidative stress are reportedly induced in the skeletal muscles, liver, and kidneys after exercise. However, the precise mechanisms underlying acute tissue injury after intense exercise have not yet been fully elucidated. Studies using various experimental models of acute tissue injury, other than intense exercise, have demonstrated infiltration of inflammatory cells, including neutrophils and macrophages. These cells infiltrate injured tissues and induce inflammatory and oxidative stress responses by producing inflammatory cytokines and reactive oxygen species, thereby exacerbating tissue injury. In addition to the activation of blood neutrophils and increase in their levels during and/or after prolonged or intense exercise, chemokines that contribute to leukocyte migration are released, facilitating the migration of neutrophils and monocytes into tissues. Therefore, neutrophils and macrophages, activated by exhaustive exercise, may infiltrate tissues and contribute to exhaustive exercise-induced tissue injury. Recently, the contributions of neutrophils and macrophages to various tissue injuries caused by exhaustive exercise have been reported. In this review, we summarize the involvement of neutrophils and monocytes/macrophages in exhaustive exercise-induced non-skeletal muscle tissue injury. In addition, we present novel data demonstrating the contribution of neutrophils and macrophages to exhaustive exercise-induced cardiac and pulmonary injuries. Our study findings and the evidence presented in this review suggest that neutrophils and macrophages may play pivotal roles in exhaustive exercise-induced tissue injuries.
Effect of high intensity interval training and moderate intensity continuous training on lymphoid, myeloid and inflammatory cells in kidney transplant recipients
Kidney transplantations are seen to be a double-edge sword. Transplantations help to partially restore renal function, however there are a number of health-related co-morbidities associated with transplantation. Cardiovascular disease (CVD), malignancy and infections all limit patient and graft survival. Immunosuppressive medications alter innate and adaptive immunity and can result in immune dysfunction. Over suppression of the immune system can result in infections whereas under suppression can result in graft rejection. Exercise is a known therapeutic intervention with many physiological benefits. Its effects on immune function are not well characterised and may include both positive and negative influences depending on the type, intensity, and duration of the exercise bout. High intensity interval training (HIIT) has become more popular due to it resulting in improvements to tradional and inflammatory markers of cardiovascular (CV) risk in clinical and non-clinical populations. Though these improvements are similar to those seen with moderate intensity exercise, HIIT requires a shorter overall time commitment, whilst improvements can also be seen even with a reduced exercise volume. The purpose of this study was to explore the physiolocial and immunological impact of 8-weeks of HIIT and moderate intensity continuous training (MICT) in kidney transplan recipients (KTRs). In addition, the natural variations of immune and inflammatory cells in KTRs and non-CKD controls over a longitudinal period are explored. Newly developed multi-colour flow cytometry methods were devised to identify and characterise immune cell populations. Twenty-six KTRs were randomised into one of two HIIT protocols or MICT: HIIT A (n=8; 4-, 2-, and 1-min intervals; 80-90% VO2peak), HIIT B (n=8, 4x4 min intervals; 80-90% VO2peak), or MICT (n=8, ~40 min; 50-60% VO2peak) for 24 supervised sessions on a stationary bike (approx. 3x/week over 8 ± 2 weeks). Blood samples taken pre-training, mid training, post-training and 3 months later. Novel multi-colour flow cytometric panels were developed to characterise lymphoid and myeloid cell population from peripheral blood mononuclear cells. No changes were observed for circulating immune and inflammatory cells over the 8-week interventions. The feasibility study does not suggest that exercise programmes using HIIT and MICT protocols elicit adverse negative effects on immunity in KTRs. Therefore, such protocols may be immunologically safe for these patients. The inability of the participants to achieve the target exercise intensities may be due to physiological abnormalities in this population which warrants further investigation.
A Scoping Review on the Effects of Physical Exercise and Fitness on Peripheral Leukocyte Energy Metabolism in Humans
Both acute and chronic exercise have profound effects on systemic metabolism and the immune system. While acute exercise transiently disturbs energy homeostasis and elicits acute inflammation, exercise training improves systemic metabolic capacity, lowers basal inflammation, and reduces infection risk. Accordingly, accumulating evidence indicates links between systemic and immune cell metabolism and suggests that cellular metabolism may be an important way exercise influences immune function. Yet, no reviews have systematically surveyed the literature in this area.
Immunometabolism-fit: How exercise and training can modify T cell and macrophage metabolism in health and disease
The term immunometabolism describes cellular and molecular metabolic processes that control the immune system and the associated immune responses. Acute exercise and regular physical activity have a substantial influence on the metabolism and the immune system, so that both processes are closely associated and influence each other bidirectionally.
Exercise-induced effects on inflammatory markers and brain-derived neurotrophic factor in patients with knee osteoarthritis. A systematic review with meta-analysis
In the pathogenesis of knee osteoarthritis (KOA), inflammatory mediators play an important role. However, the precise underlying mechanism by which regular exercise therapy (ET) exert effects on the immune system in KOA patients is unknown.
Improvement in the anti-inflammatory profile with lifelong physical exercise is related to clock genes expression in effector-memory CD4+ T cells in master athletes
Ageing is associated with alterations in the immune system as well as with alterations of the circadian rhythm. Immune cells show rhythmicity in execution of their tasks. Chronic inflammation (inflammaging), which is observed in the elderly, is mitigated by lifelong exercise. The aimed this study was to determine the acute effect of a maximal exercise test on clock genes, regulatory proteins and cytokine expression, and evaluate the effect of lifelong exercise on the expression of clock genes in subpopulations of effector-memory (EM) CD4+ and CD8+T cells and the association of these processes with the inflammatory profile. Therefore, this study aimed to investigate the expression of clock genes in subpopulations of effector memory (EM) CD4+ and CD8+ T cells in master athletes and healthy controls and further associate them with systemic inflammatory responses to acute exercise.
Exercise effect on symptom severity, morbidity and mortality in viral infections: a systematic review and meta-analysis
There is a knowledge gap regarding the consequences of exercise during acute infections in humans and contradictory findings in animal studies, compromising public health advice on the potential benefits of physical activity for immunity. Here, we carried out a meta-analysis of studies of the effects of moderate exercise (ME) and exercise until fatigue (EF) on symptom severity, morbidity and mortality during viral infection in animal models. The systematic review on PubMed, Scopus, Embase, Web of Science, Cochrane and EBSCOhost (CINAHL and SPORT Discus) identified 8 controlled studies, with 15 subgroups within them. The studies exposed the animals (mice [7 studies] and monkeys [1 study]) to exercise immediately before or after viral inoculation (HSV-1, H1N1 influenza and B.K. virus) with follow-up for 21 days. ME significantly reduced morbidity (OR 0.43 [0.19; 0.98], P = 0.04) with no change for symptom severity (SMD -3.37 [-9.01; 2.28], P = 0.24) or mortality (OR 0.48 [0.08;3.03], P = 0.43). In contrast, EF gave a trend towards increased symptom severity (SMD 0.96 [-0.06; 1.98], P = 0.07) and mortality (OR 1.47 [0.96;2.28], P =0.08) with no change in morbidity (OR 1.22 [0.60;2.5], P = 0.58). We conclude that in animals moderate exercise during infection is advantageous, whilst exercise until fatigue should be avoided. Further research is required to determine if moderate exercise may also be beneficial in humans during infection.
The effect of exercise on regulatory T cells: A systematic review of human and animal studies with future perspectives and methodological recommendations
Many of the exercise-related health-promoting effects are attributed to beneficial immunomodulation. The restoration of immune homeostasis is context-dependent, meaning either to increase anti-inflammatory signaling to counteract disease progression of non-communicable (auto)inflammatory diseases or to enhance (local) activity of proinflammatory immune cells to slow down or inhibit cancer progression. Regulatory CD4+ T cells (Tregs) represent the main regulatory component of the adaptive immune system that fine-tunes inflammatory responses, keeps them in check and prevents long-lasting autoimmunity. Because often dysregulated in the context of various diseases, emerging treatment approaches aim to modulate their number or inherent anti-inflammatory and immunosuppressive function in a highly disease-specific way. Exercise represents a non-pharmacologic strategy in disease prevention and rehabilitation and may be an effective treatment with few to no side effects to counteract dysregulation of Tregs. To date, several studies have evaluated the effect of exercise on Treg-related outcomes. This review aims at providing a comprehensive overview on alterations of blood- or tissue-derived Treg counts, proportion and functionality following acute and chronic exercise in humans and animal models. From the 60 reviewed studies, an overall disease-specific beneficial effect of chronic exercise on Treg levels in animal models can be stated, while both acute and chronic effects in human studies are less definite. However, Treg phenotyping is less sufficient in the animal studies compared to human studies. Only a limited number of studies investigated Treg functionality. There is a large heterogeneity concerning study design, human population or animal model, exercise protocol, and Treg outcome measure specification which makes it difficult to compare results and draw clear conclusions. Study results are discussed in the context of current concepts in exercise immunology. Finally, future perspectives and methodological recommendations are provided to promote research in this field.
Immune Response to COVID-19 Vaccination in Elite Athletes
This study analyses the immune response of elite athletes after COVID-19 vaccination with double-dose mRNA and a single-dose vector vaccine.